Виды оперативной памяти ddr. Как отличить типы памяти SIMM, DIMM, DDR, DDR2, DDR3. Тип оперативной памяти

Double Data Rate Synchronous Dynamic Random Access Memory - синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных) - тип компьютерной памяти , используемой в вычислительной технике в качестве оперативной и видеопамяти. Пришла на смену памяти типа SDRAM .

При использовании DDR SDRAM достигается удвоенная скорость работы, нежели в SDRAM, за счёт считывания команд и данных не только по фронту , как в SDRAM, но и по спаду тактового сигнала. За счёт этого удваивается скорость передачи данных без увеличения частоты тактового сигнала шины памяти. Таким образом, при работе DDR на частоте 100 МГц мы получим эффективную частоту 200 МГц (при сравнении с аналогом SDR SDRAM). В спецификации JEDEC есть замечание, что использовать термин «МГц» в DDR некорректно, правильно указывать скорость «миллионов передач в секунду через один вывод данных».

Специфическим режимом работы модулей памяти является двухканальный режим.

Описание

Микросхемы памяти DDR SDRAM выпускаются в корпусах TSOP и (освоено позднее) корпусах типа BGA (FBGA), производятся по нормам 0,13 и 0,09-микронного техпроцесса:

  • Напряжение питания микросхем: 2,6 В +/- 0,1 В
  • Потребляемая мощность: 527 мВт
  • Интерфейс ввода-вывода: SSTL_2

Ширина шины памяти составляет 64 бита, то есть по шине за один такт одновременно передаётся 8 байт. В результате получаем следующую формулу для расчёта максимальной скорости передачи для заданного типа памяти: (тактовая частота шины памяти ) x 2 (передача данных дважды за такт) x 8 (число байтов передающихся за один такт). Например, чтобы обеспечить передачу данных дважды за такт, используется специальная архитектура «2n Prefetch». Внутренняя шина данных имеет ширину в два раза больше внешней. При передаче данных сначала передаётся первая половина шины данных по фронту тактового сигнала, а затем вторая половина шины данных по спаду.

Помимо удвоенной передачи данных, DDR SDRAM имеет несколько других принципиальных отличий от простой памяти SDRAM. В основном, они являются технологическими. Например, был добавлен сигнал QDS, который располагается на печатной плате вместе с линиями данных. По нему происходит синхронизация при передаче данных. Если используется два модуля памяти, то данные от них приходят к контроллеру памяти с небольшой разницей из-за разного расстояния. Возникает проблема в выборе синхросигнала для их считывания, и использование QDS успешно это решает.

JEDEC устанавливает стандарты для скоростей DDR SDRAM, разделённых на две части: первая для чипов памяти, а вторая для модулей памяти, на которых, собственно, и размещаются чипы памяти.

Чипы памяти

В состав каждого модуля DDR SDRAM входит несколько идентичных чипов DDR SDRAM. Для модулей без коррекции ошибок (ECC) их количество кратно 4, для модулей с ECC - формула 4+1.

Спецификация чипов памяти

  • DDR200: память типа DDR SDRAM , работающая на частоте 100 МГц
  • DDR266: память типа DDR SDRAM , работающая на частоте 133 МГц
  • DDR333: память типа DDR SDRAM , работающая на частоте 166 МГц
  • DDR400: память типа DDR SDRAM , работающая на частоте 200 МГц

Характеристики чипов

  • Ёмкость чипа (DRAM density ). Записывается в мегабитах, например, 256 Мбит - чип ёмкостью 32 мегабайта.
  • Организация (DRAM organization ). Записывается в виде 64M x 4, где 64M - это количество элементарных ячеек хранения (64 миллиона), а x4 (произносится «by four») - разрядность чипа, то есть разрядность каждой ячейки. Чипы DDR бывают x4 и x8, последние стоят дешевле в пересчёте на мегабайт ёмкости, но не позволяют использовать функции Chipkill, memory scrubbing и Intel SDDC.

Модули памяти

Модули DDR SDRAM выполнены в форм-факторе DIMM . На каждом модуле расположено несколько одинаковых чипов памяти и конфигурационный чип SPD. На модулях регистровой (registered) памяти также располагаются регистровые чипы, буферизующие и усиливающие сигнал на шине, на модулях нерегистровой (небуферизованной, unbuffered) памяти их нет.

Характеристики модулей

  • Объём. Указывается в мегабайтах или гигабайтах.
  • Количество чипов (# of DRAM Devices ). Кратно 8 для модулей без ECC , для модулей с ECC - кратно 9. Чипы могут располагаться на одной или обеих сторонах модуля. Максимальное умещающееся на DIMM количество - 36 (9x4).
  • Количество строк (рангов) (# of DRAM rows (ranks) ).

Чипы, как видно из их характеристики, имеют 4- или 8-ми битную шину данных. Чтобы обеспечить более широкую полосу (например, DIMM требует 64 бита и 72 бита для памяти с ECC), чипы связываются в ранги. Ранг памяти имеет общую шину адреса и дополняющие друг друга линии данных. На одном модуле может размещаться несколько рангов. Но если нужно больше памяти, то добавлять ранги можно и дальше, установкой нескольких модулей на одной плате и используя тот же принцип: все ранги сидят на одной шине, только чип селекты разные - у каждого свой. Большое количество рангов электически нагружает шину, точнее контроллер и чипы памяти, и замедляет их работу. Отсюда начали применять многоканальную архитектуру , которая позволяет также независимо обращаться к нескольким модулям.

  • Задержки (тайминги): CAS Latency (CL), Clock Cycle Time (tCK), Row Cycle Time (tRC), Refresh Row Cycle Time (tRFC), Row Active Time (tRAS).

Характеристики модулей и чипов, из которых они состоят, связаны.

Объём модуля равен произведению объёма одного чипа на число чипов. При использовании ECC это число дополнительно умножается на коэффициент 9/8, так как на каждый байт приходится один бит избыточности для контроля ошибок. Таким образом, один и тот же объём модуля памяти можно набрать большим числом (36) маленьких чипов или малым числом (9) чипов большего объёма.

Общая разрядность модуля равна произведению разрядности одного чипа на число чипов и равна произведению числа рангов на 64 (72) бита. Таким образом, увеличение числа чипов или использование чипов x8 вместо x4 ведёт к увеличению числа рангов модуля.

В данном примере сравниваются возможные компоновки модуля серверной памяти объёмом 1 Гб. Из представленных вариантов следует предпочесть первый или третий, так как они используют чипы x4, поддерживающие продвинутые методы исправления ошибок и защиты от сбоев. При необходимости использовать одноранговую память остаётся доступен только третий вариант, однако в зависимости от текущей стоимости чипов объёмом 256 Мбит и 512 Мбит он может оказаться дороже первого.

Спецификация модулей памяти

Спецификация модулей памяти
Спецификация Тактовая частота шины памяти Максимальная теоретическая пропускная способность памяти
в одноканальном режиме в двухканальном режиме
PC1600*
(DDR200)
100 МГц 1600 Мбайт/сек 3200 Мбайт/сек
PC2100*
(DDR266)
133 МГц 2133 Мбайт/сек 4267 Мбайт/сек
PC2400
(DDR300)
150 МГц 2400 Мбайт/сек 4800 Мбайт/сек
PC2700*
(DDR333)
166 МГц 2667 Мбайт/сек 5333 Мбайт/сек
PC3200*
(DDR400)
200 МГц 3200 Мбайт/сек 6400 Мбайт/сек
PC3500
(DDR433)
217 МГц 3467 Мбайт/сек 6933 Мбайт/сек
PC3700
(DDR466)
233 МГц 3733 Мбайт/сек 7467 Мбайт/сек
PC4000
(DDR500)
250 МГц 4000 Мбайт/сек 8000 Мбайт/сек
PC4200
(DDR533)
267 МГц 4267 Мбайт/сек 8533 Мбайт/сек

Примечание 1: стандарты, помеченные символом «*», официально сертифицированы JEDEC. Остальные типы памяти не сертифицированы JEDEC, хотя их и выпускали многие производители памяти, а большинство выпускавшихся в последнее время материнских плат поддерживали данные типы памяти.

Примечание 2: выпускались модули памяти, работающие и на более высоких частотах (до 350 МГц, DDR700), но эти модули не пользовались большим спросом и выпускались в малом объёме, кроме того, они имели высокую цену.

Размеры модулей также стандартизированы JEDEC.

Надо заметить, что нет никакой разницы в архитектуре DDR SDRAM с различными частотами, например, между PC1600 (работает на частоте 100МГц) и PC2100 (работает на частоте 133МГц). Просто стандарт говорит о том, на какой гарантированной частоте работает данный модуль.

Модули памяти DDR SDRAM можно отличить от обычной SDRAM по числу выводов (184 вывода у модулей DDR против 168 выводов у модулей с обычной SDRAM) и по ключу (вырезы в области контактных площадок) - у SDRAM два, у DDR - один. Согласно JEDEC, модули DDR400 работают при напряжении питания 2,6 В, а все более медленные - при напряжении 2,5 В. Некоторые скоростные модули для достижения высоких частот работают при больших напряжениях, до 2,9 В.

Большинство последних чипсетов с поддержкой DDR позволяли использовать модули DDR SDRAM в двухканальном , а некоторые чипсеты и в четырёхканальном режиме. Данный метод позволяет увеличить в 2 или 4 раза соответственно теоретическую пропускную способность шины памяти. Для работы памяти в двухканальном режиме требуется 2 (или 4) модуля памяти, рекомендуется использовать модули, работающие на одной частоте и имеющие одинаковый объём и тайминги (ещё лучше использовать абсолютно одинаковые модули).

Сейчас модули DDR практически вытеснены модулями типов DDR2 и DDR3 , которые в результате некоторых изменений в архитектуре позволяют получить бо́льшую пропускную способность подсистемы памяти. Ранее главным конкурентом DDR SDRAM являлась память типа RDRAM (Rambus), однако ввиду наличия некоторых недостатков со временем была практически вытеснена с рынка.

Примечания

Литература

В. Соломенчук, П. Соломенчук Железо ПК. - 2008. - ISBN 978-5-94157-711-8

Гук М. Ю. Аппаратные средства IBM PC. Энциклопедия. - Питер, 2006. - 1072 с.

Копейкин М. В., Спиридонов В. В., Шумова Е. О. Организация ЭВМ и систем. (Память ЭВМ): Учебн. Пособие. - СПб, 20064. - 153 с.

Ссылки

  • Описание и иллюстрация почти всех параметров памяти DDR (рус.)
  • Intel® Server Board SE7501CW2 Memory List Test Report Summary (PDF, 246,834 bytes) (англ.) - небольшой список возможных конфигураций модуля памяти.
  • Kingston’s Literature Page (англ.) - несколько справочных документов, описывающих организацию модулей памяти.

Существует несколько распространенных видов модулей памяти, использующихся в современных компьютерах и компьютерах выпущенных несколько лет назад, но еще работающих в домах и офисах.
Для многих пользователей отличить их как по внешнему виду, так и по производительности - это большая проблема.
В этой статье мы рассмотрим основные особенности разных модулей памяти.

FPM

FPM (Fast Page Mode) - вид динамической памяти.
Его название соответствует принципу работы, так как модуль позволяет быстрее получать доступ к данным которые находятся на той же странице, что и данные, переданные во время предыдущего цикла.
Эти модули использовались на большинстве компьютеров с процессорами 486 и в ранних системах с процессорами Pentium, ориентировочно в 1995 году.

EDO

Модули EDO (Extended Data Out) появились в 1995 году как новый тип памяти для компьютеров с процессорами Pentium.
Это модифицированный вариант FPM.
В отличие от своих предшественников, EDO начинает выборку следующего блока памяти в то же время, когда отправляет предыдущий блок центральному процессору.

SDRAM

SDRAM (Synchronous DRAM) - вид памяти со случайным доступом, работающий на столько быстро, чтобы его можно было синхронизировать с частотой работы процессора, исключая режимы ожидания.
Микросхемы разделены на два блока ячеек так, чтобы во время обращения к биту в одном блоке шла подготовка к обращению к биту в другом блоке.

Если время обращения к первой порции информации составляло 60 нс, все последующие интервалы удалось сократить до 10 нс.
Начиная с 1996 года большинство чипсетов Intel стали поддерживать этот вид модулей памяти, сделав его очень популярным вплоть до 2001 года.

SDRAM может работать на частоте 133 МГц, что почти в три раза быстрее, чем FPM и в два раза быстрее EDO.
Большинство компьютеров с процессорами Pentium и Celeron, выпущенных в 1999 году использовали именно этот вид памяти.

DDR

DDR (Double Data Rate) стал развитием SDRAM.
Этот вид модулей памяти впервые появился на рынке в 2001 году.
Основное отличие между DDR и SDRAM заключается в том, что вместо удвоения тактовой частоты для ускорения работы, эти модули передают данные дважды за один такт.
Сейчас это основной стандарт памяти, но он уже начинает уступать свои позиции DDR2.

DDR2

DDR2 (Double Data Rate 2) - более новый вариант DDR, который теоретически должен быть в два раза более быстрым.
Впервые память DDR2 появилась в 2003 году, а чипсеты, поддерживающие ее - в середине 2004.

Эта память, также как DDR, передает два набора данных за такт.
Основное отличие DDR2 от DDR - способность работать на значительно большей тактовой частоте, благодаря усовершенствованиям в конструкции.
Но измененная схема работы, позволяющая добиться высоких тактовых частот, в то же время увеличивает задержки при работе с памятью.

DDR3

DDR3 SDRAM (синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных, третье поколение) - это тип оперативной памяти, используемой в вычислительной технике в качестве оперативной и видео-памяти.
Пришла на смену памяти типа DDR2 SDRAM.

У DDR3 уменьшено на 40% потребление энергии по сравнению с модулями DDR2, что обусловлено пониженным (1,5 В, по сравнению с 1,8 В для DDR2 и 2,5 В для DDR) напряжением питания ячеек памяти.
Снижение напряжения питания достигается за счёт использования 90-нм (вначале, в дальнейшем 65-, 50-, 40-нм) техпроцесса при производстве микросхем и применения транзисторов с двойным затвором Dual-gate (что способствует снижению токов утечки).

Модули DIMM с памятью DDR3 механически не совместимы с такими же модулями памяти DDR2 (ключ расположен в другом месте), поэтому DDR2 не могут быть установлены в слоты под DDR3 (это сделано с целью предотвращения ошибочной установки одних модулей вместо других - эти типы памяти не совпадают по электрическим параметрам).

RAMBUS (RIMM)

RAMBUS (RIMM) - это вид памяти, который появился на рынке в 1999 году.
Он основан на традиционной DRAM, но с кардинально измененной архитектурой.
Дизайн RAMBUS делает обращение к памяти более «разумным», позволяя получать предварительный доступ к данным, немного разгружая центральный процессор.

Основная идея, использованная в этих модулях памяти, заключается в получении данных небольшими пакетами, но на очень высокой тактовой частоте.
Например, SDRAM может передавать 64 бит информации при частоте 100 МГц, а RAMBUS - 16 бит при частоте 800 МГц.
Эти модули не стали успешными, так как у Intel было много проблем с их внедрением.
Модули RDRAM появились в игровых консолях Sony Playstation 2 и Nintendo 64.

Перевод: Владимир Володин

Многие при покупке flash-накопителя задаются вопросом: «как правильно выбрать флешку». Конечно, флешку выбрать не так уж и трудно, если точно знать для каких целей она приобретается. В этой статье я постараюсь дать полный ответ на поставленный вопрос. Я решил писать только о том, на что надо смотреть при покупке.

Flash-накопитель (USB-накопитель) – это накопитель, предназначенный для хранения и переноса информации. Работает флешка очень просто без батареек. Всего лишь нужно ее подключить к USB порту Вашего ПК.

1. Интерфейс флешки

На данный момент существует 2 интерфейса это: USB 2.0 и USB 3.0. Если Вы решили купить флешку, то я рекомендую брать флешку с интерфейсом USB 3.0. Данный интерфейс был сделан недавно, его главной особенностью является высокая скорость передачи данных. О скоростях поговорим чуть ниже.


Это один из главных параметров, на который нужно смотреть в первую очередь. Сейчас продаются флешки от 1 Гб до 256 Гб. Стоимость флеш-накопителя напрямую будет зависеть от объема памяти. Тут нужно сразу определиться для каких целей покупается флешка. Если вы собираетесь на ней хранить текстовые документы, то вполне хватит и 1 Гб. Для скачивания и переноски фильмов, музыки, фото и т.д. нужно брать чем больше, тем лучше. На сегодняшний день самыми ходовыми являются флешки объемом от 8Гб до 16 Гб.

3. Материал корпуса



Корпус может быть сделан из пластика, стекла, дерева, метала и т.д. В основном флешки делают из пластика. Тут я советовать нечего не могу, все зависит от предпочтений покупателя.

4. Скорость передачи данных

Ранее я писал, что существует два стандарта USB 2.0 и USB 3.0. Сейчас объясню, чем они отличаются. Стандарт USB 2.0 имеет скорость чтения до 18 Мбит/с, а записи до 10 Мбит/с. Стандарт USB 3.0 имеет скорость чтения 20-70 Мбит/с, а записи 15-70 Мбит/с. Тут, я думаю, объяснять ничего не надо.





Сейчас в магазинах можно найти флешки разных форм и размеров. Они могут быть в виде украшений, причудливых животных и т.д. Тут я бы посоветовал брать флешки, у которых есть защитный колпачок.

6. Защита паролем

Есть флешки, которые имеют функцию защиты паролем. Такая защита осуществляется при помощи программы, которая находится в самой флешке. Пароль можно ставить как на всю флешку, так и на часть данных в ней. Такая флешка в первую очередь будет полезна людям, которые переносят в ней корпоративную информацию. Как утверждают производители, потеряв ее можно не беспокоиться о своих данных. Не все так просто. Если такая флешка попадет в руки понимающего человека, то ее взлом это всего лишь дело времени.



Такие флешки внешне очень красивы, но я бы не рекомендовал их покупать. Потому что они очень хрупкие и часто ломаются пополам. Но если Вы аккуратный человек, то смело берите.

Вывод

Нюансов, как Вы заметили, много. И это только вершина айсберга. На мой взгляд, самые главные параметры при выборе: стандарт флешки, объем и скорость записи и чтения. А все остальное: дизайн, материал, опции – это всего лишь личный выбор каждого.

Добрый день, мои дорогие друзья. В сегодняшней статье я хочу поговорить о том, как правильно выбрать коврик для мыши. При покупке коврика многие не придают этому никакого значения. Но как оказалось, этому моменту нужно уделять особое внимание, т.к. коврик определяют один из показателей комфорта во время работы за ПК. Для заядлого геймера выбор коврика это вообще отдельная история. Рассмотрим, какие варианты ковриков для мыши придуманы на сегодняшний день.

Варианты ковриков

1. Алюминиевые
2. Стеклянные
3. Пластиковые
4. Прорезиненные
5. Двухсторонние
6. Гелиевые

А теперь я бы хотел поговорить о каждом виде поподробнее.

1. Сначала хочу рассмотреть сразу три варианта: пластиковые, алюминиевые и стеклянные. Такие коврики пользуются большой популярностью у геймеров. Например, пластиковые коврики легче найти в продаже. По таким коврикам мышь скользит быстро и точно. И самое главное такие коврики подходят как для лазерных, так и для оптических мышей. Алюминиевые и стеклянные коврики найти будет немного сложнее. Да и стоить они будут немало. Правда есть за что – служить они будут очень долго. Коврики данных видов имеют маленькие недостатки. Многие говорят, что при работе они шуршат и наощупь немного прохладные, что может вызывать у некоторых пользователей дискомфорт.


2. Прорезиненные (тряпичные) коврики имеют мягкое скольжение, но при этом точность движений у них хуже. Для обычных пользователей такой коврик будет в самый раз. Да и стоят они намного дешевле предыдущих.


3. Двухсторонние коврики, на мой взгляд, очень интересная разновидность ковриков для мыши. Как понятно из названия у таких ковриков две стороны. Как правило, одна сторона является скоростной, а другая высокоточной. Бывает так, что каждая сторона рассчитана на определенную игру.


4. Гелиевые коврики имеют силиконовую подушку. Она якобы поддерживает руку и снимает с нее напряжение. Лично для меня они оказались самыми неудобными. По назначению они рассчитаны для офисных работников, поскольку те целыми днями сидят за компьютером. Для обычных пользователей и геймеров такие коврики не подойдут. По поверхности таких ковриков мышь скользит очень плохо, да и точность у них не самая хорошая.

Размеры ковриков

Существует три вида ковриков: большие, средние и маленькие. Тут все в первую очередь зависит от вкуса пользователя. Но как принято считать большие коврики хорошо подходят для игр. Маленькие и средние берут в основном для работы.

Дизайн ковриков

В этом плане, нет ни каких ограничений. Все зависит от того что Вы хотите видеть на своем коврике. Благо сейчас на ковриках что только не рисуют. Наиболее популярными являются логотипы компьютерных игр, таких как дота, варкрафт, линейка и т.д. Но если случилось, что Вы не смогли найти коврик с нужным Вам рисунком, не стоит огорчаться. Сейчас можно заказать печать на коврик. Но у таких ковриков есть минус: при нанесении печати на поверхность коврика его свойства ухудшаются. Дизайн в обмен на качество.

На этом я хочу закончить статью. От себя желаю сделать Вам правильный выбор и быть им довольным.
У кого нет мышки или хочет её заменить на другую советую посмотреть статью: .

Моноблоки компании Microsoft пополнились новой моделью моноблока под названием Surface Studio. Свою новинку Microsoft представил совсем недавно на выставке в Нью-Йорке.


На заметку! Я пару недель назад писал статью, где рассматривал моноблок Surface. Этот моноблок был представлен ранее. Для просмотра статьи кликайте по .

Дизайн

Компания Microsoft свою новинку называет самым тонким в мире моноблоком. При весе в 9,56 кг толщина дисплея составляет всего лишь 12,5 мм, остальные габариты 637,35х438,9 мм. Размеры дисплея составляют 28 дюймов с разрешением больше чем 4К (4500х3000 пикселей), соотношение сторон 3:2.


На заметку! Разрешение дисплея 4500х3000 пикселей соответствует 13,5 млн пикселей. Это на 63% больше, чем у разрешения 4К.

Сам дисплей моноблока сенсорный, заключенный в алюминиевый корпус. На таком дисплее очень удобно рисовать стилусом, что в итоге открывает новые возможности использования моноблоком. По моему мнению эта модель моноблока будет по нраву творческим людям (фотографы, дизайнеры и т. д.).


На заметку! Для людей творческих профессий я советую посмотреть статью, где я рассматривал моноблоки подобного функционала. Кликаем по выделенному: .

Ко всему выше написанному я бы добавил, что главной фишкой моноблока будет его возможность мгновенно превращаться в планшет с огромной рабочей поверхностью.


На заметку! Кстати, у компании Microsoft есть еще один удивительный моноблок. Чтобы узнать о нем, переходите по .

Технические характеристики

Характеристики я представлю в виде фотографии.


Из периферии отмечу следующее: 4 порта USB, разъем Mini-Display Port, сетевой порт Ethernet, card-reader, аудио гнездо 3,5 мм, веб-камера с 1080р, 2 микрофона, аудиосистема 2.1 Dolby Audio Premium, Wi-Fi и Bluetooth 4.0. Так же моноблок поддерживает беспроводные контроллеры Xbox.





Цена

При покупке моноблока на нем будет установлена ОС Windows 10 Creators Update. Данная система должна выйти весной 2017 года. В данной операционной системе будет обновленный Paint, Office и т. д. Цена на моноблок будет составлять от 3000 долларов.
Дорогие друзья, пишите в комментариях, что вы думаете об этом моноблоке, задавайте интересующие вопросы. Буду рад пообщаться!

Компания OCZ продемонстрировала новые SSD-накопители VX 500. Данные накопители будут оснащаться интерфейсом Serial ATA 3.0 и сделаны они в 2.5-дюймовом форм-факторе.


На заметку! Кому интересно, как работает SSD-диски и сколько они живут, можно прочитать в ранее мною написанной статье: .
Новинки выполнены по 15-нанометровой технологии и будут оснащаться микрочипами флеш-памяти Tochiba MLC NAND. Контроллер в SSD-накопителях будет использоваться Tochiba TC 35 8790.
Модельный ряд накопителей VX 500 будет состоять из 128 Гб, 256 Гб, 512 Гб и 1 Тб. По заявлению производителя последовательна скорость чтения будет составлять 550 Мб/с (это у всех накопителей этой серии), а вот скорость записи составит от 485 Мб/с до 512 Мб/с.


Количество операций ввода/вывода в секунду (IOPS) с блоками данных размером 4 кбайта может достигать 92000 при чтении, а при записи 65000 (это все при произвольном).
Толщина накопителей OCZ VX 500 будет составлять 7 мм. Это позволит использовать их в ультрабуках.




Цены новинок будут следующими: 128 Гб — 64 доллара, 256 Гб — 93 доллара, 512 Гб — 153 доллара, 1 Тб — 337 долларов. Я думаю, в России они будут стоить дороже.

Компания Lenovo на выставке Gamescom 2016 представила свой новый игровой моноблок IdeaCentre Y910.


На заметку! Ранее я писал статью, где уже рассматривал игровые моноблоки разных производителей. Данную статью можно посмотреть, кликнув по этой .


Новинка от Lenovo получила безрамочный дисплей размером 27 дюймов. Разрешение дисплея составляет 2560х1440 пикселей (это формат QHD), частота обновлений равна 144 Гц, а время отклика 5 мс.


У моноблока будет несколько конфигураций. В максимальной конфигурации предусмотрен процессор 6 поколения Intel Core i7, объем жесткого диска до 2 Тб или объемом 256 Гб. Объем оперативной памяти равен 32 Гб DDR4. За графику будет отвечать видеокарта NVIDIA GeForce GTX 1070 либо GeForce GTX 1080 с архитектурой Pascal. Благодаря такой видеокарте к моноблоку можно будет подключить шлем виртуальной реальности.
Из периферии моноблока я бы выделил аудиосистему Harmon Kardon с 5-ваттными динамиками, модуль Killer DoubleShot Pro Wi-Fi, веб-камеру, USB порты 2.0 и 3.0, разъемы HDMI.


В базовом варианте моноблок IdeaCentre Y910 появиться в продаже в сентябре 2016 года по цене от 1800 евро. А вот моноблок с версией «VR-ready» появится в октябре по цене от 2200 евро. Известно, что в этой версии будет стоять видеокарта GeForce GTX 1070.

Компания MediaTek решила модернизировать свой мобильный процессор Helio X30. Так что теперь разработчики из MediaTek проектируют новый мобильный процессор под названием Helio X35.


Я бы хотел вкратце рассказать о Helio X30. Данный процессор имеет 10 ядер, которые объединены в 3 кластера. У Helio X30 есть 3 вариации. Первый - самый мощный состоит из ядер Cortex-A73 с частотой до 2,8 ГГц. Так же есть блоки с ядрами Cortex-A53 с частотой до 2,2 ГГц и Cortex-A35 с частотой 2,0 ГГц.


Новый процессор Helio X35 тоже имеет 10 ядер и создается он по 10-нанометровой технологии. Тактовая частота в этом процессоре будет намного выше, чем у предшественника и составляет от 3,0 Гц. Новинка позволит задействовать до 8 Гб LPDDR4 оперативной памяти. За графику в процессоре скорее всего будет отвечать контроллер Power VR 7XT.
Саму станцию можно увидеть на фотографиях в статье. В них мы можем наблюдать отсеки для накопителей. Один отсек с разъемом 3,5 дюймов, а другой с разъемом 2,5 дюймов. Таким образом к новой станции можно будет подключить как твердотельный диск (SSD), так и жесткий диск (HDD).


Габариты станции Drive Dock составляют 160х150х85мм, а вес ни много ни мало 970 граммов.
У многих, наверное, возникает вопрос, как станция Drive Dock подключается к компьютеру. Отвечаю: это происходит через USB порт 3.1 Gen 1. По заявлению производителя скорость последовательного чтения будет составлять 434 Мб/сек, а в режиме записи (последовательного) 406 Мб/с. Новинка будет совместима с Windows и Mac OS.


Данное устройство будет очень полезным для людей, которые работают с фото и видео материалами на профессиональном уровне. Так же Drive Dock можно использовать для резервных копий файлов.
Цена на новое устройство будет приемлемой — она составляет 90 долларов.

На заметку! Ранее Рендучинтала работал в компании Qualcomm. А с ноября 2015 года он перешел в конкурирующую компанию Intel.


В своем интервью Рендучинтала не стал говорить о мобильных процессорах, а лишь сказал следующее, цитирую: «Я предпочитаю меньше говорить и больше делать».
Таким образом, топ-менеджер Intel своим интервью внес отличную интригу. Нам остается ждать новых анонсов в будущем.

Сейчас актуальным стандартом оперативной памяти является DDR4, но в использовании все еще находится множество компьютеров с DDR3, DDR2 и даже DDR. Из-за такого оперативной памяти многие пользователи путаются и забывают какая именно оперативная память используется на их компьютере. Решению этой проблемы и будет посвящена данная статья. Здесь мы расскажем, как узнать какая оперативная память используется на компьютере DDR, DDR2, DDR3 или DDR4.

Если у вас есть возможность открыть компьютер и осмотреть его комплектующие, то всю необходимую информацию вы можете получить с наклейки на модуле оперативной памяти.

Обычно на наклейке можно найти надпись с названием модуля памяти. Это название начинается с букв «PC» после которых идут цифры, и оно указывает на тип данного модуля оперативной памяти и его пропускную способность в мегабайтах за секунду (МБ/с).

Например, если на модуле памяти написано PC1600 или PC-1600, то это модуль DDR первого поколения с пропускной способностью в 1600 МБ/с. Если на модуле написано PC2‑ 3200, то это DDR2 с пропускной способностью в 3200 МБ/с. Если PC3 – то это DDR3 и так далее. В общем, первая цифра после букв PC указывает на поколение DDR, если этой цифры нет, то это простой DDR первого поколения.

В некоторых случаях на модулях оперативной памяти указывается не название модуля, а тип оперативной памяти и его эффективная частота. Например, на модуле может быть написано DDR3 1600. Это означает что это модуль DDR3 c эффективной частотой памяти 1600 МГц.

Для того чтобы соотносить названия модулей с типом оперативной памяти, а пропускную способность с эффективной частотой можно использовать таблицу, которую мы приводим ниже. В левой части этой таблицы указаны названия модулей, а в правой тип оперативной памяти, который ему соответствует.

Название модуля Тип оперативной памяти
PC-1600 DDR-200
PC-2100 DDR-266
PC-2400 DDR-300
PC-2700 DDR-333
PC-3200 DDR-400
PC-3500 DDR-433
PC-3700 DDR-466
PC-4000 DDR-500
PC-4200 DDR-533
PC-5600 DDR-700
PC2-3200 DDR2-400
PC2-4200 DDR2-533
PC2-5300 DDR2-667
PC2-5400 DDR2-675
PC2-5600 DDR2-700
PC2-5700 DDR2-711
PC2-6000 DDR2-750
PC2-6400 DDR2-800
PC2-7100 DDR2-888
PC2-7200 DDR2-900
PC2-8000 DDR2-1000
PC2-8500 DDR2-1066
PC2-9200 DDR2-1150
PC2-9600 DDR2-1200
PC3-6400 DDR3-800
PC3-8500 DDR3-1066
PC3-10600 DDR3-1333
PC3-12800 DDR3-1600
PC3-14900 DDR3-1866
PC3-17000 DDR3-2133
PC3-19200 DDR3-2400
PC4-12800 DDR4-1600
PC4-14900 DDR4-1866
PC4-17000 DDR4-2133
PC4-19200 DDR4-2400
PC4-21333 DDR4-2666
PC4-23466 DDR4-2933
PC4-25600 DDR4-3200

В интернет магазинах, чаще всего, оперативная память обозначается с помощью типа памяти и эффективной частоты (например, как DDR3-1333 или DDR4-2400) поэтому, если на вашей памяти написано название модуля (например, PC3-10600 или PC4-19200), то вы можете перевести его с помощью таблицы.

Использование специальных программ

Если же ваши модули оперативной памяти уже установлены в компьютер, то вы можете узнать к какому типу они относятся с помощью специальных программ.

Самый простой вариант - это воспользоваться бесплатной программой CPU-Z . Для этого запустите CPU-Z на своем компьютере и перейдите на вкладку «Memory ». Здесь в левом верхнем углу окна будет указан тип оперативной памяти, который используется на вашем компьютере. А чуть ниже — общий объем RAM на вашем компьютере.

Также на вкладке «Memory » можно узнать эффективную частоту, на которой работает ваша оперативная память. Для этого нужно взять значение реальной тактовой частоты, которое указано в строке «DRAM Frequency », и умножить его два. Например, на скриншоте внизу указана частота 665.1 МГц, умножаем ее на 2 и получаем эффективную частоту 1330,2 МГц.

Если вы хотите узнать более подробную информацию о модулях оперативной памяти, которые установлены на вашем компьютере, то это можно сделать на вкладке «SPD ».

Память: ОЗУ, DDR SDRAM, SDR SDRAM, PC100, DDR333, PC3200... как во всём этом разобраться? Давайте попробуем!

Итак, первое что мы должны сделать это "разгладить" все сомнения и вопросы по поводу номиналов на памяти...

Самые распространённые типы памяти это:

  • SDR SDRAM (обозначения PC66, PC100, PC133)
  • DDR SDRAM (обозначения PC266, PC333 и т.д. или PC2100, PC2700)
  • RDRAM (PC800)

Теперь для последующих объяснений, расскажу про тайминги и частоты. Тайминг - это задержка между отдельными операциями, производимыми контроллером при обращении к памяти.

Если рассмотреть состав памяти, получим: всё её пространство представлено в виде ячеек (прямоугольники), которые состоят из определённого количества строк и столбцов. Один такой "прямоугольник" называется страницей, а совокупность страниц называется банком.

Для обращения к ячейке, контроллер задаёт номер банка, номер страницы в нём, номер строки и номер столбца, на все запросы тратится время, помимо этого довольно большая затрата уходит на открытие и закрытие банка после самой операции чтения/записи. На каждое действие требуется время, оно и называется таймингом.

Теперь рассмотрим поподробнее каждый из таймингов. Некоторые из них не доступны для настройки - время доступа CS# (crystal select ) этот сигнал определяет кристалл (чип) на модуле для проведения операции.

Кроме этого, остальные можно менять:

  • RCD (RAS-to-CAS Delay) это задержка между сигналами RAS (Row Address Strobe) и CAS (Column Address Strobe) , данный параметр характеризует интервал между доступами на шину контроллером памяти сигналов RAS# и CAS# .
  • CAS Latency (CL) это задержка между командой чтения и доступностью к чтению первого слова. Введена для набора адресными регистрами гарантированно устойчивого уровня сигнала.
  • RAS Precharge (RP) это время повторной выдачи (период накопления заряда) сигнала RAS# - через какое время контроллер памяти будет способен снова выдать сигнал инициализации адреса строки.
  • Примечание: порядок операций именно таков (RCD-CL-RP), но зачастую тайминги записывают не по порядку, а по "важности" - CL-RCD-RP.

  • Precharge Delay (или Active Precharge Delay ; чаще обозначается как Tras ) это время активности строки. Т.е. период, в течение которого закрывается строка, если следующая требуемая ячейка находится в другой строке.
  • SDRAM Idle Timer (или SDRAM Idle Cycle Limit ) количество тактов, в течение которых страница остаётся открытой, после этого страница принудительно закрывается, либо для доступа к другой странице, либо для обновления (refresh)
  • Burst Length это параметр, который устанавливает размер предвыборки памяти относительно начального адреса обращения. Чем больше его размер, тем выше производительность памяти.

Ну вот, вроде разобрались с основными понятиями о таймингах, теперь рассмотрим подробнее номиналы памяти (PC100, PC2100, DDR333 и т.д.)

Существует два типа обозначений для одной и той же памяти: одно - по "эффективной частоте" DDRxxx, а второе - по теоретической пропускной способности PCxxxx.

Обозначение "DDRxxx" исторически развилось из последовательности названий стандартов "PC66-PC100-PC133" - когда было принято скорость памяти ассоциировать с частотой (разве что ввели новое сокращение "DDR" для того, чтобы отличать SDR SDRAM от DDR SDRAM). Одновременно с памятью DDR SDRAM появилась память RDRAM (Rambus), на которой хитрые маркетологи решили ставить не частоту, а пропускную способность - PC800. При этом ширина шины данных как была 64 бита (8 байт) - так и осталась, то есть те самые PC800 (800 МБ/с) получались умножением 100 МГц на 8. Естественно от названия ничего не поменялось, и PC800 RDRAM - суть та же самая PC100 SDRAM, только в другом корпусе... Это ничего больше, чем стратегия для продаж, грубо говоря "наколоть людей". В ответ компании, которые выпускают модули, стали писать теоретическую пропускную способность - PCxxxx. Так появились PC1600, PC2100 и следующие... При этом у DDR SDRAM эффективная частота выше в два раза, а значит и больше числа на обозначениях.

Вот пример соответствий обозначений:

  • 100 МГц = PC1600 DDR SDRAM = DDR200 SDRAM = PC100 SDRAM = PC800 RDRAM
  • 133 МГц = PC2100 DDR SDRAM = DDR266 SDRAM = PC133 SDRAM = PC1066 RDRAM
  • 166 МГц = PC2700 DDR SDRAM = DDR333 SDRAM = PC166 SDRAM = PC1333 RDRAM
  • 200 МГц = PC3200 DDR SDRAM = DDR400 SDRAM = PC200 SDRAM = PC1600 RDRAM
  • 250 МГц = PC4000 DDR SDRAM = DDR500 SDRAM

Что же касается RAMBUS (RDRAM) писать много не буду, но всё же постараюсь ее вам представить.

Существует три разновидности RDRAM - Base , Concurrent и Direct . Base и Concurrent это практически одно и тоже, но Direct имеет приличные отличия, поэтому расскажу про первые две обобщённо, а про последнюю - поподробней.

Base RDRAM и Concurrent RDRAM в основном отличаются только рабочими частотами: для первой частота составляет 250-300 MHz, а для второй этот параметр, соответственно, равен 300-350 MHz. Данные передаются по два пакета данных за такт, так что эффективная частота передачи получается в два раза больше. Память использует восьми битную шину данных, что, следовательно, дает пропускную способность 500-600 Mb/s (BRDRAM) и 600-700 Mb/s (CRDRAM).

Direct RDRAM (DRDRAM) в отличие от Base и Concurrent, имеет 16-битную шину и работает на частоте 400 MHz. Пропускная способность Direct RDRAM составляет 1.6 Gb/s (учитывая двунаправленную передачу данных), что уже по сравнению с SDRAM (1 Gb/s для РС133) выглядит довольно неплохо. Обычно, говоря о RDRAM, подразумевают DRDRAM, поэтому буква "D" в названии часто опускается. При появлении этого типа памяти Intel создала чипсет для Pentium 4 - i850.

Самый большой плюс Rambus памяти это то, что чем больше модулей - тем больше пропускная способность, например до 1.6 Gb/s на один канал и до 6.4 Gb/s при четырех каналах.

Имеется также два недостатка, довольно значительных:

1. Лапки золотые и приходят в негодность, если плату памяти вытащить и вставить в слот больше 10 раз (примерно).

2. Завышенная цена, но многие находят очень хорошее применение этой памяти и готовы заплатить за них большие деньги.

Вот, пожалуй, и всё, мы разобрались с таймингами, названиями и номиналами, теперь я расскажу немного о различных немаловажных мелочах.

Вы наверняка видели в BIOS"e при настройках частоты памяти опцию By SPD что это значит? SPD - Serial Presence Detect , это микросхема на модуле, в которую зашиты все параметры для работы модуля, это так сказать "значения по умолчанию". Сейчас из-за появления "noname" компаний, стали записывать в этот чип имя производителя и дату.

Регистровая память

Registered Memory это память с регистрами, которые служат буфером между контроллером памяти и чипами модуля. Регистры уменьшают нагрузку на систему синхронизации и позволяют набирать очень большое количество памяти (16 или 24 гигабайт) не перегружая цепи контроллера.

Но данная схема имеет недостаток - регистры вносят задержку в 1 такт на каждую операцию, а значит - регистровая память медленнее обычной при прочих равных условиях. То есть - оверклокеру неинтересна (да и стОит она очень дорого).

Все сейчас кричат про Dual channel - что это?

Dual channel - двойной канал, это позволяет обращаться одновременно к двум модулям. Dual channel - это не тип модулей, а функция интегрированная в материнскую плату. Может быть задействована с двумя (желательно) идентичными модулями. Включается он автоматически при наличие 2-х модулей.

Примечание: чтобы активировать эту функцию, надо установить модули в слоты разных цветов.

Parity и ECC

Memory with Parity это память с проверкой чётности, способна детектировать некоторые типы ошибок.

Memory with ECC это память с коррекцией ошибок, позволяет найти, а также исправить ошибку одного бита в байте. Применяется в основном на серверах.

Примечание: она медленнее обычной, не годится для людей любящих скорость.

Надеюсь, после прочтения статьи вы разобрались с более популярными "непонятными понятиями".