Теорема сложения и умножения вероятностей формула. Теорема умножения вероятностей событий. Теорема о сумме вероятностей

Теорема сложения вероятностей

Рассмотрим несовместные случайные события.

Известно, что несовместные случайные события $A$ и $B$ в одном и том же испытании имеют вероятности появления $P\left(A\right)$ и $P\left(B\right)$ соответственно. Найдем вероятность суммы $A+B$ этих событий, то есть вероятность появления хотя бы одного из них.

Предположим, что в данном испытании число всех равновозможных элементарных событий $n$. Из них событиям $A$ и $B$ благоприятствуют $m_{A} $ и $m_{B} $ элементарных событий соответственно. Поскольку события $A$ и $B$ несовместные, то событию $A+B$ благоприятствуют $m_{A} +m_{B} $ элементарных событий. Имеем $P\left(A+B\right)=\frac{m_{A} +m_{B} }{n} =\frac{m_{A} }{n} +\frac{m_{B} }{n} =P\left(A\right)+P\left(B\right)$.

Теорема 1

Вероятность суммы двух несовместных событий равняется сумме их вероятностей.

Примечание 1

Следствие 1. Вероятность суммы любого количества несовместных событий равняется сумме вероятностей этих событий.

Следствие 2. Сумма вероятностей полной группы несовместных событий (сумма вероятностей всех элементарных событий) равна единице.

Следствие 3. Сумма вероятностей противоположных событий равна единице, поскольку они образуют полную группу несовместных событий.

Пример 1

Вероятность того, что на протяжении некоторого времени в городе ни разу не будет идти дождь, $p=0,7$. Найти вероятность $q$ того, что на протяжении этого же времени дождь в городе будет идти хотя бы один раз.

События "на протяжении некоторого времени в городе ни разу не шел дождь" и "на протяжении некоторого времени дождь в городе шел хотя бы один раз" противоположные. Поэтому $p+q=1$, откуда $q=1-p=1-0,7=0,3$.

Рассмотрим совместные случайные события.

Известно, что совместные случайные события $A$ и $B$ в одном и том же испытании имеют вероятности появления $P\left(A\right)$ и $P\left(B\right)$ соответственно. Найдем вероятность суммы $A+B$ этих событий, то есть вероятность появления хотя бы одного из них.

Предположим, что в данном испытании число всех равновозможных элементарных событий $n$. Из них событиям $A$ и $B$ благоприятствуют $m_{A} $ и $m_{B} $ элементарных событий соответственно. Поскольку события $A$ и $B$ совместны, то из всего количества $m_{A} +m_{B} $ элементарных событий определенное количество $m_{AB} $ благоприятствует одновременно и событию $A$, и событию $B$, то есть совместному их наступлению (произведению событий $A\cdot B$). Это количество $m_{AB} $ вошло одновременно и в $m_{A} $, и в $m_{B} $ Итак событию $A+B$ благоприятствуют $m_{A} +m_{B} -m_{AB} $ элементарных событий. Имеем: $P\left(A+B\right)=\frac{m_{A} +m_{B} -m_{AB} }{n} =\frac{m_{A} }{n} +\frac{m_{B} }{n} -\frac{m_{AB} }{n} =P\left(A\right)+P\left(B\right)-P\left(A\cdot B\right)$.

Теорема 2

Вероятность суммы двух совместных событий равняется сумме вероятностей этих событий за минусом вероятности их произведения.

Замечание. Если события $A$ и $B$ несовместны, то их произведение $A\cdot B$ является невозможным событием, вероятность которого $P\left(A\cdot B\right)=0$. Следовательно, формула сложения вероятностей несовместных событий является частным случаем формулы сложения вероятностей совместных событий.

Пример 2

Найти вероятность того, что при одновременном бросании двух игральных кубиков цифра 5 выпадет хотя бы один раз.

При одновременном бросании двух игральных кубиков число всех равновозможных элементарных событий равно $n=36$, поскольку на каждую цифру первого кубика может выпасти шесть цифр второго кубика. Из них событие $A$ -- выпадение цифры 5 на первом кубике -- осуществляется 6 раз, событие $B$ -- выпадение цифры 5 на втором кубике -- тоже осуществляется 6 раз. Из всех двенадцати раз цифра 5 один раз выпадает на обоих кубиках. Таким образом, $P\left(A+B\right)=\frac{6}{36} +\frac{6}{36} -\frac{1}{36} =\frac{11}{36} $.

Теорема умножения вероятностей

Рассмотрим независимые события.

События $A$ и $B$, которые происходят в двух последовательных испытаниях, называются независимыми, если вероятность появления события $B$ не зависит от того, состоялось или не состоялось событие $A$.

Например, пусть в урне находятся 2 белых и 2 черных шар а. Испытанием является извлечение шара. Событие $A$ -- "вынут белый шар в первом испытании". Вероятность $P\left(A\right)=\frac{1}{2} $. После первого испытания шар положили назад и провели второе испытание. Событие $B$ -- ``вынут белый шар во втором испытании"". Вероятность $P\left(B\right)=\frac{1}{2} $. Вероятность $P\left(B\right)$ не зависит от того, состоялось или нет событие $A$, следовательно события $A$ и $B$ независимы.

Известно, что независимые случайные события $A$ и $B$ двух последовательных испытаний имеют вероятности появления $P\left(A\right)$ и $P\left(B\right)$ соответственно. Найдем вероятность произведения $A\cdot B$ этих событий, то есть вероятность совместного их появления.

Предположим, что в первом испытании число всех равновозможных элементарных событий $n_{1} $. Из них событию $A$ благоприятствуют $m_{1} $ элементарных событий. Предположим также, что во втором испытании число всех равновозможных элементарных событий $n_{2} $. Из них событию $B$ благоприятствуют $m_{2} $ элементарных событий. Теперь рассмотрим новое элементарное событие, которое состоит в последовательном наступлении событий из первого и второго испытаний. Общее количество таких равновозможных элементарных событий равно $n_{1} \cdot n_{2} $. Поскольку события $A$ и $B$ независимы, то из этого числа совместному наступлению события $A$ и события $B$ (произведения событий $A\cdot B$) благоприятствует $m_{1} \cdot m_{2} $ событий. Имеем: $P\left(A\cdot B\right)=\frac{m_{1} \cdot m_{2} }{n_{1} \cdot n_{2} } =\frac{m_{1} }{n_{1} } \cdot \frac{m_{2} }{n_{2} } =P\left(A\right)\cdot P\left(B\right)$.

Теорема 3

Вероятность произведения двух независимых событий равняется произведению вероятностей этих событий.

Рассмотрим зависимые события.

В двух последовательных испытаниях происходят события $A$ и $B$. Событие $B$ называется зависимым от события $A$, если вероятность появления события $B$ зависит от того, состоялось или не состоялось событие $A$. Тогда вероятность события $B$, которая была вычислена при условии, что событие $A$ состоялось, называется условной вероятностью события $B$ при условии $A$ и обозначается $P\left(B/A\right)$.

Например, пусть в урне находятся 2 белых и 2 черных шара. Испытанием является извлечением шара. Событие $A$ -- "вынут белый шар в первом испытании". Вероятность $P\left(A\right)=\frac{1}{2} $. После первого испытания шар назад не кладут и выполняют второе испытание. Событие $B$ -- ``вынут белый шар во втором испытании"". Если в первом испытании был вынут белый шар, то вероятность $P\left(B/A\right)=\frac{1}{3} $. Если же в первом испытании был вынут черный шар, то вероятность $P\left(B/\overline{A}\right)=\frac{2}{3} $. Таким образом вероятность события $B$ зависит от того, состоялось или нет событие $A$, следовательно, событие $B$ зависит от события $A$.

Предположим, что события $A$ и $B$ происходят в двух последовательных испытаниях. Известно, что событие $A$ имеет вероятность появления $P\left(A\right)$. Известно также, что событие $B$ является зависимым от события $A$ и его условная вероятность при условии $A$ равна $P\left(B/A\right)$.

Теорема 4

Вероятность произведения события $A$ и зависимого от него события $B$, то есть вероятность совместного их появления, может быть найдена по формуле $P\left(A\cdot B\right)=P\left(A\right)\cdot P\left(B/A\right)$.

Справедливой является также симметричная формула $P\left(A\cdot B\right)=P\left(B\right)\cdot P\left(A/B\right)$, где событие $A$ предполагается зависимым от события $B$.

Для условий последнего примера найдем вероятность того, что белый шар будет извлечен в обоих испытаниях. Такое событие является произведением событий $A$ и $B$. Его вероятность равна $P\left(A\cdot B\right)=P\left(A\right)\cdot P\left(B/A\right)=\frac{1}{2} \cdot \frac{1}{3} =\frac{1}{6} $.

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

СЛОЖЕНИЕ И УМНОЖЕНИЕ ВЕРОЯТНОСТЕЙ. ПОВТОРНЫЕ НЕЗАВИСИМЫЕ ИСПЫТАНИЯ

Лекция для студентов землеустроительного факультета

заочной формы обучения

Горки, 2012

Сложение и умножение вероятностей. Повторные

независимые испытания

  1. Сложение вероятностей

Суммой двух совместных событий А и В называется событие С , состоящее в наступлении хотя бы одного из событий А или В . Аналогично суммой нескольких совместных событий называется событие, состоящее в наступлении хотя бы одного из этих событий.

Суммой двух несовместных событий А и В называется событие С , состоящее в наступлении или события А , или события В . Аналогично суммой нескольких несовместных событий называется событие, состоящее в наступлении какого-либо одного из этих событий.

Справедлива теорема сложения вероятностей несовместных событий: вероятность суммы двух несовместных событий равна сумме вероятностей этих событий , т.е. . Эту теорему можно распространить на любое конечное число несовместных событий.

Из данной теоремы следует:

сумма вероятностей событий, образующих полную группу, равна единице;

сумма вероятностей противоположных событий равна единице, т.е.
.

Пример 1 . В ящике находятся 2 белых, 3 красных и 5 синих шара. Шары перемешивают и наугад извлекают один. Какова вероятность того, что шар окажется цветным?

Решение . Обозначим события:

A ={извлечён цветной шар};

B ={извлечён белый шар};

C ={извлечён красный шар};

D ={извлечён синий шар}.

Тогда A = C + D . Так как события C , D несовместны, то воспользуемся теоремой сложения вероятностей несовместных событий: .

Пример 2 . В урне находятся 4 белых шара и 6 – чёрных. Из урны наугад вынимают 3 шара. Какова вероятность того, что все они одного цвета?

Решение . Обозначим события:

A ={вынуты шары одного цвета};

B ={вынуты шары белого цвета};

C ={вынуты шары чёрного цвета}.

Так как A = B + C и события В и С несовместны, то по теореме сложения вероятностей несовместных событий
. Вероятность события В равна
, где
4,

. Подставим k и n в формулу и получим
Аналогично найдём вероятность события С :
, где
,
, т.е.
. Тогда
.

Пример 3 . Из колоды в 36 карт наугад вынимают 4 карты. Найти вероятность того, что среди них окажется не менее трёх тузов.

Решение . Обозначим события:

A ={среди вынутых карт не менее трёх тузов};

B ={среди вынутых карт три туза};

C ={среди вынутых карт четыре туза}.

Так как A = B + C , а события В и С несовместны, то
. Найдём вероятности событий В и С :


,
. Следовательно, вероятность того, что среди вынутых карт не менее трёх тузов, равна

0.0022.

  1. Умножение вероятностей

Произведением двух событий А и В называется событие С , состоящее в совместном наступлении этих событий:
. Это определение распространяется на любое конечное число событий.

Два события называются независимыми , если вероятность наступления одного из них не зависит от того, произошло другое событие или нет. События , , … , называются независимыми в совокупности , если вероятность наступления каждого из них не зависит от того, произошли или не произошли другие события.

Пример 4 . Два стрелка стреляют по цели. Обозначим события:

A ={первый стрелок попал в цель};

B ={второй стрелок попал в цель}.

Очевидно, что вероятность попадания в цель первым стрелком не зависит от того, попал или не попал второй стрелок, и наоборот. Следовательно, события А и В независимы.

Справедлива теорема умножения вероятностей независимых событий: вероятность произведения двух независимых событий равна произведению вероятностей этих событий : .

Эта теорема справедлива и для n независимых в совокупности событий: .

Пример 5 . Два стрелка стреляют по одной цели. Вероятность попадания первого стрелка равна 0.9, а второго – 0.7. Оба стрелка одновременно делают по одному выстрелу. Определить вероятность того, что будут иметь место два попадания в цель.

Решение . Обозначим события:

A

B

C ={оба стрелка попадут в цель}.

Так как
, а события А и В независимы, то
, т.е. .

События А и В называются зависимыми , если вероятность наступления одного из них зависит от того, произошло другое событие или нет. Вероятность наступления события А при условии, что событие В уже наступило, называется условной вероятностью и обозначается
или
.

Пример 6 . В урне находятся 4 белых и 7 чёрных шаров. Из урны извлекаются шары. Обозначим события:

A ={извлечён белый шар} ;

B ={извлечён чёрный шар}.

Перед началом извлечения шаров из урны
. Из урны извлекли один шар и он оказался чёрным. Тогда вероятность события А после наступления события В будет уже другой, равной . Это означает, что вероятность события А зависит от события В , т.е. эти события будут зависимыми.

Справедлива теорема умножения вероятностей зависимых событий: вероятность произведения двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило , т.е. или .

Пример 7 . В урне находятся 4 белых шара и 8 красных. Из неё наугад последовательно извлекают два шара. Найти вероятность того, что оба шара будут чёрными.

Решение . Обозначим события:

A ={первым извлечён чёрный шар};

B ={вторым извлечён чёрный шар}.

События А и В зависимы, так как
, а
. Тогда
.

Пример 8 . Три стрелка стреляют по цели независимо друг от друга. Вероятность попадания в цель для первого стрелка равна 0.5, для второго – 0.6 и для третьего – 0.8. Найти вероятность того, что произойдут два попадания в цель, если каждый стрелок сделает по одному выстрелу.

Решение . Обозначим события:

A ={произойдут два попадания в цель};

B ={первый стрелок попадёт в цель};

C ={второй стрелок попадёт в цель};

D ={третий стрелок попадёт в цель};

={первый стрелок не попадёт в цель};

={второй стрелок не попадёт в цель};

={третий стрелок не попадёт в цель}.

По условию примера
,
,
,

,
,
. Так как , то используя теорему сложения вероятностей несовместных событий и теорему умножения вероятностей независимых событий, получим:

Пусть события
образуют полную группу событий некоторого испытания, а событии А может наступить только с одним из этих событий. Если известны вероятности и условные вероятности события А , то вероятность события А вычисляется по формуле:

Или
. Эта формула называется формулой полной вероятности , а события
гипотезами .

Пример 9 . На сборочный конвейер поступает 700 деталей с первого станка и 300 деталей со второго. Первый станок даёт 0.5% брака, а второй – 0.7%. Найти вероятность того, что взятая деталь будет бракованной.

Решение . Обозначим события:

A ={взятая деталь будет бракованной};

={деталь изготовлена на первом станке};

={деталь изготовлена на втором станке}.

Вероятность того, что деталь изготовлена на первом станке, равна
. Для второго станка
. По условию вероятность получения бракованной детали, изготовленной на первом станке, равна
. Для второго станка эта вероятность равна
. Тогда вероятность того, что взятая деталь будет бракованной, вычисляется по формуле полной вероятности

Если известно, что в результате испытания наступило некоторое событие А , то вероятность того, что это событие наступило с гипотезой
, равна
, где
- полная вероятность события А . Эта формула называется формулой Байеса и позволяет вычислять вероятности событий
после того, как стало известно, что событие А уже наступило.

Пример 10 . Однотипные детали к автомобилям производятся на двух заводах и поступают в магазин. Первый завод производит 80% общего количества деталей, а второй – 20%. Продукция первого завода содержит 90% стандартных деталей, а второго – 95%. Покупатель купил одну деталь и она оказалась стандартной. Найти вероятность того, что эта деталь изготовлена на втором заводе.

Решение . Обозначим события:

A ={куплена стандартная деталь};

={деталь изготовлена на первом заводе};

={деталь изготовлена на втором заводе}.

По условию примера
,
,
и
. Вычислим полную вероятность события А : 0.91. Вероятность того, что деталь изготовлена на втором заводе, вычислим по формуле Байеса:

.

Задания для самостоятельной работы

    Вероятность попадания в цель для первого стрелка равна 0.8, для второго – 0.7 и для третьего – 0.9. Стрелки произвели по одному выстрелу. Найти вероятность того, что имеет место не менее двух попаданий в цель.

    В ремонтную мастерскую поступило 15 тракторов. Известно, что 6 из них нуждаются в замене двигателя, а остальные – в замене отдельных узлов. Случайным образом отбираются три трактора. Найти вероятность того, что замена двигателя необходима не более, чем двум отобранным тракторам.

    На железобетонном заводе изготавливают панели, 80% из которых – высшего качества. Найти вероятность того, что из трёх наугад выбранных панелей не менее двух будут высшего сорта.

    Три рабочих собирают подшипники. Вероятность того, что подшипник, собранный первым рабочим, высшего качества, равна 0.7, вторым – 0.8 и третьим – 0.6. Для контроля наугад взято по одному подшипнику из собранных каждым рабочим. Найти вероятность того, что не менее двух из них будут высшего качества.

    Вероятность выигрыша по лотерейному билету первого выпуска равна 0.2, второго – 0.3 и третьего – 0.25. Имеются по одному билету каждого выпуска. Найти вероятность того, что выиграет не менее двух билетов.

    Бухгалтер выполняет расчёты, пользуясь тремя справочниками. Вероятность того, что интересующие его данные находятся в первом справочнике, равна 0.6, во втором – 0.7 ив третьем – 0.8. Найти вероятность того, что интересующие бухгалтера данные содержатся не более, чем в двух справочниках.

    Три автомата изготавливают детали. Первый автомат изготавливает деталь высшего качества с вероятностью 0.9, второй – с вероятностью 0.7 и третий – с вероятностью 0.6. Наугад берут по одной детали с каждого автомата. Найти вероятность того, что среди них не менее двух высшего качества.

    На двух станках обрабатываются однотипные детали. Вероятность изготовления нестандартной детали для первого станка равна 0.03, в для второго – 0.02. Обработанные детали складываются в одном месте. Среди них 67% с первого станка, а остальные – со второго. Наугад взятая деталь оказалась стандартной. Найти вероятность того, что она изготовлена на первом станке.

    В мастерскую поступили две коробки однотипных конденсаторов. В первой коробке было 20 конденсаторов, из которых 2 неисправных. Во второй коробки 10 конденсаторов, из которых 3 неисправных. Конденсаторы были переложены в один ящик. Найти вероятность того, что наугад взятый из ящика конденсатор окажется исправным.

    На трёх станках изготавливают однотипные детали, которые поступают на общий конвейер. Среди всех деталей 20% с первого автомата, 30% - со второго и 505 – с третьего. Вероятность изготовления стандартной детали на первом станке равна 0.8, на втором – 0.6 и на третьем – 0.7. Взятая деталь оказалась стандартной. Найти вероятность того, эта деталь изготовлена на третьем станке.

    Комплектовщик получает для сборки 40% деталей с завода А , а остальные – с завода В . Вероятность того, что деталь с завода А – высшего качества, равна 0.8, а с завода В – 0.9. Комплектовщик наугад взял одну деталь и она оказалась не высшего качества. Найти вероятность того, что эта деталь с завода В .

    Для участия в студенческих спортивных соревнованиях выделено 10 студентов из первой группы и 8 – из второй. Вероятность того, что студент из первой группы попадёт в сборную академии, равна 0.8, а со второй – 0.7. Наугад выбранный студент попал в сборную. Найти вероятность того, что он из первой группы.

Теорема умножения вероятностей двух произвольных событий: вероятность произведения двух произвольных событий равна произведению вероятности одного из событий на условную вероятность другого события, при условии, что первое уже произошло:

P(AB)=P(A)P(B|A) = P(B)P(A|B). (10)

Доказательство (не строгое): докажем теорему умножения для схемы шансов (равновероятных гипотез). Пусть возможные исходы опыта являются n шансами. Предположим, что событию A благоприятны m шансов (на рис. 11 имеют штриховку); событию B - k шансов; одновременно событиям A и B (AB) - l шансов (на. рис. 11 имеют светлую штриховку).

Рисунок 11

Очевидно, что m+k-l=n. По классическому способу вычисления вероятностей P(AB)=l/n; P(A)=m/n; P(B)=k/n. А вероятность P(B|A)=l/m, поскольку известно, что один из m шансов события A произошел, а событию B благоприятны l подобных шансов. Подставив данные выражения в теорему (10), получим тождество l/n=(m/n)(l/m). Теорема доказана.

Теорема умножения вероятностей трёх произвольных событий:

P(ABC)=|AB=D|=P(DC)=P(D)P(C|D)=P(AB)P(C|AB)=P(A)P(B|A)P(C|AB).(11)

По аналогии можно записать теоремы умножения вероятностей для большего количества событий.

Следствие 1. Если событие A не зависит от B, то и событие B не зависит от A.

Доказательство. Т.к. событие A не зависит от B, то по определению независимости событий P(A)=P(A|B)=P(А|). Требуется доказать, что P(B)=P(B|A).

По теореме умножения P(AB)=P(A)P(B|A)=P(B)P(A|B), следовательно, P(A)P(B|A)=P(B)P(A). Предполагая, что P(A)>0, разделим обе части равенства на P(A) и получим: P(B)=P(B|A).

Из следствия 1 вытекает, что два события независимы, если появление одного из них не изменяет вероятность появления другого. На практике, зависимыми являются события (явления), связанные между собой причинно-следственной связью.

Следствие 2. Вероятность произведения двух независимых событий равна произведению вероятностей этих событий. Т.е. если события A и B независимы, то

P(AB)=P(A)P(B). (11)

Доказательство очевидно, поскольку для независимых событий P(B|A)=P(B).

Тождество (11) наряду с выражениями (12) и (13) являются необходимыми и достаточными условиями независимости двух случайных событий A и B.

P(A)=P(A|B); P(A)=P(А|); P(A|B)=P(А|); (12)

P(B)=P(B|A); P(B)=P(B|); P(B|A)=P(B|). (13)

Надёжность некоторой системы повышается двукратным резервированием (см. рис. 12). Вероятность безотказной работы первой подсистемы (в течение некоторой наработки) равна 0.9, второй - 0,8. Определить вероятность отказа системы в целом в течение заданной наработки, если отказы подсистем независимы.

Рисунок 12 - Двукратно резервированная система

E: исследование безотказности двукратно резервированной системы управления;

A 1 ={безотказная работа (в течение некоторой наработки) первой подсистемы}; P(A 1)=0,9;

A 2 ={безотказная работа второй подсистемы}; P(A 2)=0,8;

A={безотказная работа системы в целом}; P(A)=?

Решение. Выразим событие A через события A 1 и A 2 вероятности которых известны. Поскольку для безотказной работы системы достаточно безотказной работы хотя бы одного из её подсистем, то очевидно A=A 1 A 2.

Применяя теорему сложения вероятностей получим: P(A)=P(A 1 A 2)=P(A 1)+P(A 2)-P(A 1 A 2). Вероятность совместного наступления событий A 1 и A 2 определим по теореме умножения вероятностей: P(A 1 A 2)=P(A 1)P(A 2 |A 1). Учитывая, что (по условию) события A 1 и A 2 независимы, P(A 1 A 2)=P(A 1)P(A 2). Таким образом, вероятность безотказной работы системы равна P(A)=P(A 1 A 2)=P(A 1)+P(A 2)-P(A 1)P(A 2)=0,9+0,8-0,90,8=0,98.

Ответ: вероятность безотказной работы системы в течение заданной наработки равна 0,98.

Замечание. В примере 20 возможен другой способ определения события A через события A 1 и A 2: , т.е. отказ системы возможен при одновременном отказе обоих её подсистем. Применяя теорему умножения вероятностей независимых событий получим следующее значение вероятности отказа системы: . Следовательно, вероятность безотказной работы системы в течение заданной наработки равна.

Пример 21 (парадокс независимости)

E: бросается две монеты.

A={выпадение герба на первой монете}, P(A)=0,5;

B={выпадение герба на второй монете}, P(B)=0,5;

C={выпадение герба только на одной из монет}, P(C)=0,5.

События A, B и C попарно независимы, поскольку выполняются условия независимости двух событий (11)-(13):

P(A)=P(A|B)=0,5; P(B)=P(B|C)=0,5; P(C)=P(C|A)=0,5.

Однако P(A|BC)=0P(A); P(A|C)=1P(A); P(B|AC)=0P(B); P(C|AB)=0P(C).

Замечание. Попарная независимость случайных событий не означает их независимость в совокупности.

Случайные события называются независимыми в совокупности, если вероятность наступления каждого из них не изменяется с наступлением любой комбинации остальных событий. Для случайных событий A 1, A 2, … A n, независимых в совокупности, справедлива следующая теорема умножения вероятностей (необходимое и достаточное условие независимости в совокупности n случайных событий):

P(A 1 A 2 …A n)=P(A 1)P(A 2)…P(A n). (14)

Для примера 21 условие (14) не выполняется: P(ABC)=0P(A)P(B)P(C)=0,50,50,5=0,125. Следовательно, попарно независимые события A, B и C зависимы в совокупности.

Пример 22

В коробке находятся 12 транзисторов, три из которых неисправны. Для сборки двухкаскадного усилителя случайным образом извлекаются два транзистора. С какой вероятностью собранный усилитель будет неисправен?

E: выбор двух транзисторов из коробки с 9-ю исправными и 3-мя неисправными транзисторами;

A={неисправность собранного усилителя}; P(A)=?

Решение. Очевидно, что собранный двухкаскадный усилитель будет неисправен, если будет неисправен хотя бы один из двух отобранных для сборки транзисторов. Поэтому переопределим событие A следующим образом:

A={хотя бы один из двух отобранных транзисторов неисправен};

Определим следующие вспомогательные случайные события:

A 01 ={неисправен только первый из двух отобранных транзисторов};

A 10 ={неисправен только второй из двух отобранных транзисторов};

A 00 ={неисправны оба отобранных транзистора};

Очевидно, что A=A 01 A 10 A 00 (для наступления события A необходимо наступление хотя бы одного из событий A 01 или A 10 или A 00), причем события A 01, A 10 и A 00 несовместны (вместе произойти не могут), поэтому вероятность события найдем по теореме сложения вероятностей несовместных событий:

P(A)=P(A 01 A 10 A 00)=P(A 01)+P(A 10)+P(A 00).

Для определения вероятностей событий A 01, A 10 и A 00 введем вспомогательные события:

B 1 ={первый отобранный транзистор неисправен};

B 2 ={второй отобранный транзистор неисправен}.

Очевидно, что A 01 =B 1 ; A 10 =B 2 ; A 00 =B 1 B 2 ; поэтому для определения вероятностей событий A 01, A 10 и A 00 применим теорему умножения вероятностей.

P(A 01)=P(B 1)=P(B 1)P(|B 1),

где P(B 1) - вероятность того, что первый отобранный транзистор будет неисправен; P(|B 1) - вероятность того, что второй отобранный транзистор будет исправен, при условии, что первый отобранный транзистор неисправен. Применяя классический способ вычисления вероятностей, P(B 1)=3/12, а P(|B 1)=9/11 (поскольку после выбора первого неисправного транзистора в коробке осталось 11 транзисторов, 9 из которых исправны).

Таким образом, P(A 01)=P(B 1)=P(B 1)P(|B 1)=3/129/11=0,20(45). По аналогии:

P(A 10)=P(B 2)=P()P(B 2 |)=9/123/11=0,20(45);

P(A 00)=P(B 1 B 2)=P(B 1)P(B 2 |B 1)=3/122/11=0,041(6).

Подставим полученные значения вероятностей A 01, A 10 и A 00 в выражение для вероятности события A:

P(A)=P(A 01 A 10 A 00)=P(A 01)+P(A 10)+P(A 00)=3/129/11+9/123/11+3/122/11=0,45(45).

Ответ: вероятность того, что собранный усилитель будет неисправен, равна 0,4545.

  • Теорема. Вероятность суммы несовместных событий иравна сумме вероятностей этих событий:

  • Следствие 1. С помощью метода математической индукции формулу (3.10) можно обобщить на любое число попарно несовместных событий:

  • Следствие 2. Поскольку противоположные события являются несовместными, а их сумма – достоверным событием, то, используя (3.10), имеем:

  • Часто при решении задач формулу (3.12) используют в виде:

    (3.13)

    Пример 3.29. В опыте с бросанием игральной кости найти вероятности выпадения на верхней грани числа очков более 3 и менее 6.

    Обозначим события, связанные с выпадением на верхней грани игральной кости одного очка, через U 1 , двух очков через U 2 ,…, шести очков через U 6 .

    Пусть событие U – выпадение на верхней грани кости числа очков более 3 и менее 6. Это событие произойдет, если произойдет хотя бы одно из событий U 4 или U 5 , следовательно, его можно представить в виде суммы этих событий: . Т. к. событияU 4 и U 5 являются несовместными, то для нахождения вероятности их суммы используем формулу (3.11). Учитывая, что вероятности событий U 1 , U 2 ,…,U 6 равны , получим:

  • Замечание. Ранее задачи такого типа решали с помощью подсчета числа благоприятствующих исходов. Действительно, событию U благоприятствуют два исхода, а всего шесть элементарных исходов, следовательно, используя классический подход к понятию вероятности, получим:

    Однако классический поход к понятию вероятности, в отличие от теоремы о вероятности суммы несовместных событий, применим только для равновозможных исходов.

    Пример 3.30. Вероятность попадания в цель стрелком равна 0,7. Какова вероятность того, что стрелок не попадет в цель?

    Пусть событие − попадание стрелком в цель, тогда событие, состоящее в том, что стрелок не попадет в цель, является противоположным событиемсобытию, т. к. в результате каждого испытания всегда происходит одно и только одно из этих событий. Используя формулу (3.13), получим:

  • 3.2.10. Вероятность произведения событий

  • Определение. Событие называетсязависимым от события если вероятность события зависит от того, произошло событиеили нет.

    Определение. Вероятность события вычисленная при условии, что событиепроизошло, называетсяусловной вероятностью события и обозначается

    Теорема. Вероятность произведения событий иравна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое имело место:

  • Условие независимости события от события можно записать в виде Из этого утверждения следует, что для независимых событий выполняется соотношение:

  • т. е. вероятность произведения независимых событий и, равна произведению их вероятностей.

    Замечание. Вероятность произведения нескольких событий равна произведению вероятностей этих событий, причем вероятность каждого следующего по порядку события вычисляется при условии, что все предыдущие имели место:

  • Если события независимые, то имеем:

  • Пример 3.31. В ящике 5 белых и 3 черных шара. Из него наугад последовательно без возвращения вытаскивают два шара. Найти вероятность того, что оба шара белые.

    Пусть событие − появление белого шара при первом вынимании,− появление белого шара при втором вынимании. Учитывая, что,(вероятность появления второго белого шара при условии, что первый вынутый шар был белым и его не возвратили в ящик). Так как событияизависимые, то вероятность их произведения найдем по формуле (3.15):

  • Пример 3.32. Вероятность попадания в цель первым стрелком 0,8; вторым – 0,7. Каждый стрелок выстрелил по мишени. Какова вероятность того, что хотя бы один стрелок попадет в цель? Какова вероятность того, что один стрелок попадет в цель?

    Пусть событие – попадание в цель первым стрелком,– вторым. Все возможные варианты можно представить в видетаблицы 3.5 , где «+» обозначает, что событие произошло, а «−» − не произошло.

    Таблица 3.5

  • Пусть событие – попадание хотя бы одним стрелком в цель, Тогда событиеявляется суммой независимых событийиследовательно, применить теорему о вероятности суммы несовместных событий в данной ситуации нельзя.

    Рассмотрим событие противоположное событиюкоторое произойдет тогда, когда ни один стрелок не попадет в цель, т. е. является произведением независимых событийИспользуя формулы (3.13) и (3.15), получим:

  • Пусть событие – попадание одним стрелком в цель. Это событие можно представить следующим образом:

    События и– независимые, событияитакже являются независимыми. События, являющиеся произведениями событийи– несовместными. Используя формулы (3.10) и (3.15) получим:

  • Свойства операций сложения и умножения событий:

  • 3.2.11. Формула полной вероятности. Формула Байеса

  • Пусть событие может произойти только вместе с одним из попарно несовместных событий (гипотез),,…,, образующих полную группу, т. е.

    Вероятность события находится по формулеполной вероятности:

  • Если событие уже произошло, то вероятности гипотез могут быть переоценены по формулеБайеса :

    (3.17)

    Пример 3.33. Имеются две одинаковых урны с шарами. В первой урне 5 белых и 10 черных шаров, во второй − 3 белых и 7 черных шаров. Выбирают наугад одну урну и вытаскивают из нее один шар.

      Найти вероятность того, что этот шар белый.

      Из наугад выбранной урны вытащили белый шар. Найти вероятность того, что шар вытащили из первой урны.