Умножение вероятностей зависимых и независимых событий. Произведение вероятностей совместных событий. Сложение и умножение вероятностей. Повторные

Сумма всех вероятностей событий выборочного пространства равняется 1. Например, если экспериментом является подбрасывание монеты при Событии А = «орел» и Событии В = «решка», то А и В представляют собой все выборочное пространство. Значит, Р(А) +Р(В) = 0.5 + 0.5 = 1 .

Пример. В ранее предложенном примере вычисления вероятности извлечения из кармана халата красной ручки (это событие А), в котором лежат две синих и одна красная ручка, Р(А) = 1/3 ≈ 0.33, вероятность противоположного события – извлечения синей ручки – составит

Прежде чем перейти к основным теоремам, введем еще два более сложных понятия - сумма и произведение событий. Эти понятия отличны от привычных понятий суммы и произведения в арифметике. Сложение и умножение в теории вероятностей - символические операции, подчиненные определенным правилам и облегчающие логическое построение научных выводов.

Суммой нескольких событий является событие, заключающееся в появлении хотя бы одного из них. То есть, суммой двух событий А и В называется событие С, состоящее в появлении или события А, или события В, или событий А и В вместе.

Например, если пассажир ждет на остановке трамваев какой-либо из двух маршрутов, то нужное ему событие заключается в появлении трамвая первого маршрута (событие А), или трамвая второго маршрута (событие В), или в совместном появлении трамваев первого и второго маршрутов (событие С). На языке теории вероятностей это значит, что нужное пассажиру событие D заключается в появлении или события А, или события В, или события С, что символически запишется в виде:

D = A + B + C

Произведением двух событий А и В является событие, заключающееся в совместном появлении событий А и В . Произведением нескольких событий называется совместное появление всех этих событий.

В приведенном примере с пассажиром событие С (совместное появление трамваев двух маршрутов) представляет собой произведение двух событий А и В , что символически записывается следующим образом:

Допустим, что два врача порознь осматривают пациента с целью выявления конкретного заболевания. В процессе осмотров возможно появление следующих событий:

Обнаружение заболеваний первым врачом (А );

Необнаружение заболевания первым врачом ();

Обнаружение заболевания вторым врачом (В );

Необнаружение заболевания вторым врачом ().

Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров ровно один раз. Это событие может реализоваться двумя способами:

Заболевание обнаружит первый врач (А ) и не обнаружит второй ();

Заболеваний не обнаружит первый врач () и обнаружит второй (B ).

Обозначим рассматриваемое событие через и запишем символически:

Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров дважды (и первым, и вторым врачом). Обозначим это событие через и запишем: .

Событие, заключающееся в том, что ни первый, ни второй врач заболевания не обнаружит, обозначим через и запишем: .

Основные теоремы теории вероятности

Вероятность суммы двух несовместных событий равняется сумме вероятностей этих событий.

Запишем теорему сложения символически:

Р(А + В) = Р(А)+Р(В) ,

где Р - вероятность соответствующего события (событие указывается в скобках).

Пример . У больного наблюдается желудочное кровотечение. Этот симптом регистрируется при язвенной эрозии сосуда (событие А), разрыве варикозно-расширенных вен пищевода (событие В), раке желудка (событие С), полипе желудка (событие D), геморрагическом диатезе (событие F), механической желтухе (событие Е) и конечном гастрите (событие G ).

Врач, основываясь на анализе статистических данных, присваивает каждому событию значение вероятности:

Всего врач имел 80 больных с желудочным кровотечением (n = 80), из них у 12 была язвенная эрозия сосуда (), у 6 - разрыв варикозно-расширенных вен пищевода (), у 36 - рак желудка () и т. д.

Для назначения обследования врач хочет определить вероятность того, что желудочное кровотечение связано с заболеванием желудка (событие I):

Вероятность того, что желудочное кровотечение связано с заболеванием желудка, достаточно высока, и врач может определить тактику обследования, исходя из предположения о заболевании желудка, обоснованном на количественном уровне с помощью теории вероятностей.

Если рассматриваются совместные события, вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности совместного их наступления.

Символически это записывается следующей формулой:

Если представить себе, что событие А заключается в попадании при стрельбе в мишень, заштрихованную горизонтальными полосами, а событие В - в попадании в мишень, заштрихованную вертикальными полосами, то в случае несовместных событий по теореме сложения вероятность суммы равна сумме вероятностей отдельных событий. Если же эти события совместны, то есть некоторая вероятность, соответствующая совместному наступлению событий А и В . Если не ввести поправку на вычитаемое Р(АВ) , т.е. на вероятность совместного наступления событий, то эта вероятность будет учтена дважды, так как площадь, заштрихованная и горизонтальными, и вертикальными линиями, является составной частью обеих мишеней и будет учитываться как в первом, так и во втором слагаемом.

На рис. 1 дана геометрическая интерпретация, наглядно иллюстрирующая данное обстоятельство. В верхней части рисунка помещены непересекающиеся мишени, являющиеся аналогом несовместных событий, в нижней части - пересекающиеся мишени, являющиеся аналогом совместных событий (одним выстрелом можно попасть сразу и в мишень А, и в мишень В).

Прежде чем перейти к теореме умножения, необходимо рассмотреть понятия независимых и зависимых событий и условной и безусловной вероятностей.

Независимым от события В называется такое событие А, вероятность появления которого не зависит от появления или непоявления события В.

Зависимым от события В называется такое событие А, вероятность появления которого зависит от появления или непоявления события В.

Пример . В урне находятся 3 шара, 2 белых и 1 черный. При выборе шара наугад вероятность выбрать белый шар (событие А) равна: Р(А) = 2/3, а черный (событие В)Р(В) = 1/3. Мы имеем дело со схемой случаев, и вероятности событий рассчитываются строго по формуле. При повторении опыта вероятности появления событий А и В остаются неизменными, если после каждого выбора шар возвращается в урну. В этом случае события А и В являются независимыми. Если же выбранный в первом опыте шар в урну не возвращается, то вероятность события (А) во втором опыте зависит от появления или непоявления события (В) в первом опыте. Так, если в первом опыте появилось событие В (выбран черный шар), то второй опыт проводится при наличии в урне 2 белых шаров и вероятность появления события А во втором опыте равна: Р(А) = 2/2= 1.

Если же в первом опыте не появилось событие В(выбран белый шар), то второй опыт проводится при наличии в урне одного белого и одного черного шаров и вероятность появления события А во втором опыте равна: Р(А)=1/2. Очевидно, в этом случае события А и В тесно связаны и вероятности их появления являются зависимыми.

Условной вероятностью события А называется вероятность его появления при условии, что появилось событие В. Условная вероятность символически обозначается Р(А/В).

Если вероятность появления события А не зависит от появления события В , то условная вероятность события А равна безусловной вероятности:

Если вероятность появления события А зависит от появления события В, то условная вероятность никогда не может быть равна безусловной вероятности:

Выявление зависимости различных событий между собой имеет большое значение в решении практических задач. Так, например, ошибочное предположение о независимости появления некоторых симптомов при диагностике пороков сердца по вероятностной методике, разработанной в Институте сердечно-сосудистой хирургии им. А. Н. Бакулева, обусловило около 50% ошибочных диагнозов.

Понятие события и вероятности события. Достоверные и невозможные события. Классическое определение вероятностей. Теорема сложения вероятностей. Теорема умножения вероятностей . Решение простейших задач на определение вероятности с использованием сложения вероятностей.

Методические указания по теме 3.1:

Понятие события и вероятности события. Достоверные и невозможные события. Классическое определение вероятностей:

Изучение каждого явления в порядке наблюдения или производства опыта связан с осуществлением некоторого комплекса условий (испытаний). Всякий результат или исход испытания называется событием.

Если событие при заданных условиях может произойти или не произойти, то оно называется случайным. В том случае, когда событие должно непременно произойти, его называют достоверным , а в том случае, когда оно заведомо не может произойти, - невозможным.

События называются несовместными, если каждый раз возможно появление только одного из них. События называются совместными, если в данных условиях появление одного из этих событий не исключает появление другого при том же испытании.

События называются противоположными, если в условиях испытания они, являясь единственными его исходами, несовместны.

Вероятность события рассматривается как мера объективной возможности появления случайного события.

Вероятностью события называется отношение числа исходов m , благоприятствующих наступлению данного события , к числу n всех исходов (несовместных, единственно возможных и равновозможных), т.е.

Вероятность любого события не может быть меньше нуля и больше единицы, т.е. . Невозможному событию соответствует вероятность , а достоверному - вероятность

Пример 1. В лотерее из 1000 билетов имеются 200 выигрышных. Вынимают наугад один билет. Чему равна вероятность того, что этот билет выигрышный?

Общее число различных исходов есть n = 1000. Число исходов, благоприятствующих получению выигрыша, составляет m = 200. Согласно формуле, получим .

Пример 2. Из урны, в которой находятся 5 белых и 3 черных шара, вынимают один шар. Найти вероятность того, что шар окажется черным.

Обозначим событие, состоящее в появлении черного шара, через . Общее число случаев . Число случаев m , благоприятствующих появлению события , равно 3. По формуле получим .

Пример 3. Из урны, в которой находятся 12 белых и 8 черных шаров, вынимают наудачу два шара. Какова вероятность того, что оба шара окажутся черными?

Обозначим событие, состоящее в появлении двух черных шаров через . Общее число возможных случаев n равно числу сочетаний из 20 элементов (12 + 8) по два:

Число случаев m , благоприятствующих событию , составляет


По формуле находим вероятность появления двух черных шаров:

Теорема сложения вероятностей. Решение простейших задач на определение вероятности с использованием теоремы сложения вероятностей:

Теорема сложения вероятностей несовместных событий. Вероятность появления одного из нескольких попарно несовместных событий, безразлично какого, равно сумме вероятностей этих событий:

Теорема сложения вероятностей совместных событий. Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления:

Пример 4. В ящике в случайном порядке разложены 20 деталей, причем пять из них стандартные. Рабочий берет наудачу три детали. Найти вероятность того, что по крайней мере она из взятых деталей окажется стандартной.

Очевидно, что по крайней мере одна из взятых деталей окажется стандартной, если произойдет любое из трех несовместных событий: B - одна деталь стандартная, две нестандартные; C - две детали стандартные, одна нестандартная и D - три детали стандартные.

Таким образом, событие A можно представить в виде суммы этих трех событий: A = B + C + D. По теореме сложения имеем P(A) = P(B) + P(C) + P(D). Находим вероятность каждого из этих событий:

Сложив найденные величины, получим

Пример 5. Найти вероятность того, что наудачу взятое двузначное число окажется кратным либо 3, либо 5, либо тому и другому одновременно.

Пусть A - событие, состоящее в том, что наудачу взятое число кратно 3, а B - в том, что оно кратно 5. Найдем Так как A и B совместные события, то воспользуемся формулой:

Всего имеется 90 двузначных чисел: 10, 11, 98, 99. Из них 30 являются кратными 3 (благоприятствуют наступлению события A ); 18 - кратными 5 (благоприятствуют наступлению события B ) и 6 - кратными одновременно 3 и 5 (благоприятствуют наступлению события AB ). Таким образом, т.е.

Теорема умножения вероятностей:

Теорема умножения вероятностей независимых событий. Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий:

Вероятность появления нескольких событий, независимых в совокупности, вычисляется по формуле:

Теорема умножения вероятностей зависимых событий. Вероятность совместного появления двух зависимых событий равна произведению одного из них на условную вероятность второго:

Пример 6. В одной урне находятся 4 белых и 8 черных шаров, в другой - 3 белых и 9 черных. Из каждой урны вынули по шару. Найти вероятность того, что оба шара окажутся белыми.

Пусть - появление белого шара из первой урны, а - появление белого шара из второй урны. Очевидно, что события и независимы. Найдем

По формуле получим:

Вопросы для самопроверки по теме 3.1:

1. Что такое событие?

2. Какие события называются достоверными?

3. Какие события называются невозможными?

4. Дать определение вероятности.

5. Сформулировать теорему сложения вероятностей.

6. Сформулировать теорему умножения вероятностей.

Задания для самостоятельного решения по теме 3.1:

1. В ящике в случайном порядке положены 10 деталей, из которых 4 стандартных. Контролер взял наудачу 3 детали. Найти вероятность того, что хотя бы одна из взятых деталей оказалась стандартной.

2. В урне находятся 10 белых, 15 черных, 20 синих и 25 красных шаров. Найдите вероятность того, что вынутый шар окажется: 1) белым; 2) черным или красным.

3. Найдите вероятность того, что наудачу взятое двузначное число окажется кратным либо 4, либо 5, либо тому и другому одновременно.

4. Рабочий обслуживает два автомата, работающих независимо друг от друга. Вероятность того, что в течение часа первый автомат не потребует внимания рабочего, равна 0,8, а для второго автомата эта вероятность равна0,7. Найдите вероятность того, что в течение часа ни один и автоматов не потребует внимания рабочего.

5. В урне находятся 6 шаров, из которых 3 белых. Наудачу вынуты один за другим два шара. Вычислите вероятность того, что оба шара окажутся белыми.

6. В урне находятся 10 белых и 6 черных шаров. Найдите вероятность того, что три наудачу вынутых один за другим шара окажутся черными.

Событие A называется независимым от события B, если вероятность события A не зависит от того, произошло событие B или нет. Событие A называется зависимым от события B, если вероятность события A меняется в зависимости от того, произошло событие B или нет.

Вероятность события A, вычисленная при условии, что событие B уже произошло, называется условной вероятностью события A и обозначается .

Условие независимости события A от события B можно записать в виде
.

Теорема умножения вероятностей. Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое имело место:

Если событие A не зависит от события B, то событие B не зависит от события A. При этом вероятность произведения событий равна произведению их вероятностей:

.

Пример 14. Имеется 3 ящика, содержащих по 10 деталей. В первом ящике 8, во втором - 7 и в третьем 9 стандартных деталей. Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что все три вынутые детали окажутся стандартными.

Вероятность того, что из первого ящика вынута стандартная деталь (событие A) равна
. Вероятность того, что из второго ящика вынута стандартная деталь (событиеB) равна
. Вероятность того, что из третьего ящика вынута стандартная деталь (событиеC) равна
.

Так как события A, B и C независимые в совокупности, то по теореме умножения искомая вероятность равна

Приведем пример совместного использования теорем сложения и умножения.

Пример 15. Вероятности появления независимых событий A 1 и A 2 равны соответственно p 1 и p 2 . Найти вероятность появления только одного из этих событий (событие A). Найти вероятность появления хотя бы одного из этих событий (событие B).

Обозначим вероятности противоположных событий ичерезq 1 =1-p 1 и q 2 =1-p 2 соответственно.

Событие A произойдет, если произойдет событие A 1 и не произойдет событие A 2 , или если произойдет событие A 2 и не произойдет событие A 1 . Следовательно,

Событие B произойдет, если произойдет событие A, или произойдут события A 1 и A 2 одновременно. Следовательно,

Вероятность события B можно определить иначе. Событие , противоположное событиюB состоит в том, что оба события A 1 и A 2 не произойдут. Поэтому по теореме умножения вероятностей для независимых событий получим

что совпадает с выражением, полученным ранее, так как имеет место тождество

7. Формула полной вероятности. Формула Байеса.

Теорема 1 . Предположим, что события
образуют полную группу попарно несовместных событий (такие события называются гипотезами). ПустьA - произвольное событие. Тогда вероятность события A может быть вычислена по формуле

Доказательство. Так как гипотезы образуют полную группу, то , и, следовательно,.

В силу того, что гипотезы являются попарно несовместными событиями, то события также попарно несовместны. По теореме сложения вероятностей

Применяя теперь теорему умножения вероятностей, получим

Формула (1) называется формулой полной вероятности. В сокращенном виде ее можно записать следующим образом

.

Формула полезна, если условные вероятности события A вычисляются легче, чем безусловная вероятность.

Пример 16 . Имеется 3 колоды по 36 карт и 2 колоды по 52 карты. Наудачу выбираем одну колоду и из нее наудачу одну карту. Найти вероятность того, что вынутая карта - туз.

Пусть A - событие, состоящее в том, что вынутая карта - туз. Введем в рассмотрение две гипотезы:

- карта вынута из колоды в 36 карт,

- карта вынута из колоды в 52 карты.

Для вычисления вероятности события A воспользуемся формулой полной вероятности:

Теорема 2 . Предположим, что события
образуют полную группу попарно несовместных событий. ПустьA - произвольное событие. Условная вероятность гипотезы в предположении, что произошло событиеA, может быть вычислена по формуле Байеса:

Доказательство. Из теоремы умножения вероятностей для зависимых событий следует, что .

.

Применяя формулу полной вероятности, получим (2).

Вероятности гипотез
называются априорными, а вероятности гипотез
при условии, что событие A имело место, называются апостериорными. Сами формулы Байеса называются еще формулами вероятностей гипотез.

Пример 17 . Имеются 2 урны. Первая урна содержит 2 белых и 4 черных шара, а вторая урна содержит 7 белых и 5 черных шаров. Наудачу выбираем урну и из нее наудачу извлекаем один шар. Он оказался черным (событие A произошло). Найти вероятность того, что шар был извлечен из первой урны (гипотеза
). Найти вероятность того, что шар был извлечен из второй урны (гипотеза
).

Применим формулы Байеса:

,

.

Пример 18 . На заводе болты выпускаются тремя машинами, которые выпускают соответственно 25%, 35% и 40% всех болтов. Брак продукции этих машин составляет соответственно 5%, 4%, 2%. Из продукции всех трех машин был выбран один болт. Он оказался дефектным (событие A). Найти вероятность того, что болт был выпущен первой, второй, третьей машиной.

Пусть
- событие, состоящее в том, что болт был выпущен первой машиной,
- второй машиной,
- третьей машиной. Эти события попарно несовместны и образуют полную группу. Воспользуемся формулами Байеса

В результате получим

,

,

.

Часто бывает так, что вероятность некото-рого события можно найти, зная вероятности других событий, связанных с этим со-бытием.

Теорема сложения вероятностей.

?Теорема 2.6. (Теорема сложения вероятностей ). Вероят-ность суммы (объедине-ния; появления одного из них, безраз-лично какого) двух произвольных событий равна сумме вероят-ностей этих событий за вычетом вероятности их совместного появле-ния, т.е. P (A +B ) = P (A ) + P (B ) - P (AB ).

Следствие 1. Вероятность суммы (объединения) попарно не-совместных событий равна сумме их вероятностей, т.е. P (A 1 +A 2 +...+A n ) = = P (A 1) + P (A 2) + ... + P (A n ).

Следствие 2. Пусть A 1 , A 2 , ... , A n - полная группа попарно несовместных собы-тий. Тогда P (A 1)+P (A 2)+ ... +P (A n ) = 1.

Следствие 3. Сумма вероятностей противоположных собы-тий равна единице, т.е. P (A ) + P (`A ) = 1.

Пример 2.10. В урне 5 белых, 6 черных и 9 красных шаров. Какова вероятность того, что первый наугад вынутый шар окажется черным или красным?

Решение. Здесь имеется всего 20 элементарных исходов, из кото-рых появлению черного шара бла-гоприятствует 6, а появлению крас-ного - 9. Поэтому вероятность со-бытия A - появление черного шара: P (A ) = 6/20, а вероятность события B - появление красного шара: P (A ) = 9/20. Поскольку собы-тия A и B несовме-стны (вынимается всего один шар), то P (A +B ) = P (A ) + P (B ) = 6/20 + 9/20 = 0,75. Ответ : 0,75.

? Условная вероятность события B (P A (B)) - вероятность события B, вычислен-ная при условии, что событие A уже про-изошло . Если A и B - независимые события, то P A (B ) = P (B ), P B (A ) = P (A ).

Теорема умножения вероятностей.

?Теорема 2.7. (Теорема умножения вероятностей ). Вероят-ность произведения (пе-ресечения; совместного появления) двух произвольных событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при усло-вии, что первое собы-тие уже наступило, т.е. P (AB ) = P (A P A (B ) = P (B P B (A ).

Пример 2.11. На полке стоят 11 научно-популярных книг и 5 ху-дожественных. Какова вероят-ность того, что две подряд наугад взятые книги окажутся художественными?

Решение. Рассмотрим два события B 1 и B 2: B 1 - при первом испы-та-нии взята художественная книга, B 2 - при втором испытании взята ху-дожественная книга. По теореме 2.7 вероятность такого собы-тия равна P (B 1 B 2)=P (B 1)·P B 1 (B 2). Вероятность события B 1 P (B 1) = 5/16. По-сле первого испытания на полке останется 15 книг, из которых 4 ху-доже-ственные, по-этому условная веро-ятность P B 1 (B 2) = 4/15. Отсюда искомая вероятность равна: P (B 1 B 2) = . Ответ : 1/12.


Следствие 1. Вероятность совместного появления несколь-ких событий равна про-изведению вероятности одного из них на условные вероят-ности всех остальных, при-чем вероятность ка-ждого последующего события вычис-ляют при условии, что все предыдущие события уже наступили, т.е. P (A 1 ·A 2 ·...·A n ) = P (A 1)·P A 1 (A 2) P A 1A 2 (A 3). · ... ·P A 1 A 2… An -1 (A n ).

Пример 2.12. Из десяти карточек составлено слово «МАТЕМА-ТИКА». Из них школьник нау-дачу выбирает поочередно четыре кар-точки и приставляет одну к другой. Какова вероятность того, что по-лучится слово «ТЕМА»?

Решение. Введем события A 1 , A 2 , A 3 , A 4 , состоящие в том, что пер-вая выбранная буква - Т, вторая - Е, тре-тья - М и четвертая - А. Нам нужно найти вероят-ность произведения этих событий. По след-ствию 1 из тео-ремы 2.7 имеем:

P (A 1 ·A 2 ·A 3 ·A 4) = P (A 1)·P A 1 (A 2)·P A 1A 2 (A 3)·P A 1A 2A 3 (A 4) = Ответ : 1/420.

Следствие 2. Если A 1 ,A 2 ,...,A n - независимые события, то ве-роятность их произве-дения (совместного появления) равна про-изведению вероятностей этих собы-тий, т.е. P (A 1 ·A 2 · ... ·A n ) = P (A 1)·P (A 2)· ... ·P (A n ).

Пример 2.13. Два стрелка независимо один от другого де-лают по одному выстрелу по од-ной и той же мишени. Вероятность поражения мишени первым стрелком - 0,7, вторым - 0,8. Какова вероят-ность того, что ми-шень будет поражена?

Решение. Пусть событие А состоит в том, что мишень поразил пер-вый стрелок, а событие В - в том, что ми-шень поразил второй стрелок. По условию Р (А ) = 0,7 и Р (В ) =0,8.

1-й способ . Рассмотрим противоположные события:`A - промах первого стрелка,`B - промах вто-рого. По следствию 3 из тео-ремы 2.6 получаем Р (`A ) = 1-0,7 = 0,3 и Р (`B ) = 1-0,8 = 0,2. Произведение собы-тий `A ·`B означает промах обоих стрелков. По смыслу задачи собы-тия А и В являются незави-симыми, поэтому и противоположные со-бытия`A и`B также будут независимыми. По следствию 2 из теоремы 2.7 получаем вероят-ность того, что оба стрелка промахнутся: Р(`А·`В) = 0,3·0,2 = 0,06. Нас же интересу-ет вероятность противоположного события, состоящего в том, что мишень поражена. По-этому искомую вероят-ность мы находим по следствию 3 из теоремы 2.6: 1 - 0,06 = 0,94.

2-й способ . Искомая событие (мишень будет поражена хотя бы од-ним стрелком) есть сумма собы-тий A и B . По теореме 2.6. P (A +B ) = P (A ) + P (B ) - P (AB ) = 0,7 + 0,8 - 0,7·0,8 = 1,5 - 0,56 = 0,94. Ответ : 0,94.

Пример 2.14 . В студенческой группе 25 человек. Какова вероят-ность того, что дни рождения хотя бы у двоих совпадают?

Решение . Вероятность того, что дни рождения у двух произвольно взятых людей совпадают, равна 1/365 (считаем, что попадания дня рождения на любой день в году - равновозможные случаи). Тогда ве-роятность того, что дни рожде-ния двух людей не совпадают, т.е. веро-ятно-сть противопо-ложного события равна 1-1/365 = 364/365. Вероят-ность того, что день рожде-ния третьего отличается от дней рождения двух предыдущих, составит 363/365 (363 случая из 365 благо-приятст-вуют этому событию). Рассуждая аналогично, находим, что для 25-го члена группы эта веро-ятность равна 341/365. Далее найдем вероят-ность того, что дни рождения всех 25 членов группы не совпадают. По-скольку все эти события (несовпадение дня рождения каждого оче-редного члена группы с днями ро-ждения преды-дущих) независимы, то по следствию 2 из теоремы 2.7 получаем:

P (A 2 A 3 ... A 25) = · · ... · » 0,43.

Это вероятность того, что дни рождения у всех 25 человек не сов-падают. Ве-роятность противопо-ложного события будет вероятностью того, что хотя бы у двоих дни рождения совпадают, т.е. иско-мой веро-ятностью P » 1-0,43 = 0,57. Ответ : » 0,57.

Формула полной вероятно-сти.

?Теорема 2.8. Пусть B 1 , B 2 , …, B n - полная группа попарно не-совместных событий. Ве-роятность события A , которое может наступить лишь при условии наступления од-ного из событий B 1 , B 2 , …, B n , равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность собы-тия A , т.е.

P(A ) = P (B 1)·P B 1 (A ) + P (B 2)·P B 2 (A ) + … + P (B n P Bn (A ).

Эта формула называется формулой полной вероятно-сти . События B 1 , B 2 , …, B n , удовлетворяющие условию теоремы 2.8, называют гипотезами .

Пример 2.15. Турист равновероятно выбирает один из трех маршру-тов: конный, водный и горный. Вероятность, что он успешно преодолеет путь при выборе конного способа передвижения, равна 0,75, при выборе водного пути - 0,8, при выборе горного маршрута - 0,55. Найдите вероятность, что турист успешно преодолеет весь путь при любом выборе маршрута.

Решение . Введем события: A - «Турист успешно преодолеет весь путь при любом выборе маршрута», B 1 , B 2 , B 3 - выбран соответственно, конный, водный и горный маршрут. Поскольку выбор маршрута равновероятен, то вероятно-сти выбора каждого маршрута P (B 1) = P (B 2) = P (B 3) = 1/3. По условию P B 1 (A ) = 0,75; P B 2 (A ) = 0,8; P B 3 (A ) = 0,55. Тогда по формуле полной вероятности: P (A ) = P (B 1)·P B 1 (A ) + P (B 2)·P B 2 (A ) + P (B 3)·P B 3 (A ) = (1/3)·0,75 + (1/3) ·0,8 + (1/3)0,55 = 0,7.

Ответ : 0,7.

?Теорема 2.9. Условная вероятность любой гипотезы B i (i = 1, 2, … ,n ) вычисляется по формуле Бейеса :

Формула Бейеса позволяет переоценить вероятности гипотез после того, как ста-но-вится известным результат испытания, в итоге которого появилось событие A .

Пример 2.16. Имеется три набора микросхем, первый из которых содержит 100, второй 300 и тре-тий 600 микросхем. Вероятность того, что микросхема, взятая наугад из первого набора, исправна, равна 0,9, а для второго и третьего наборов - соответственно 0,85 и 0,8. Какова вероятность того, что: а) произвольно взятая микросхема исправна: б) исправная микросхема извлечена из второго на-бора?

Решение . а) В данном случае имеется три гипотезы, вероятности которых P (B 1) = 0,1, P (B 2) = 0,3, P (B 3) = 0,6. Пользуясь формулой полной вероятности, находим P (A ) = P (B 1)·P B 1 (A ) + P (B 2)·P B 2 (A ) + P (B 3)·P B 3 (A ) = 0,1·0,9 + 0,3·0,85 + 0,6·0,8 = 0,825.

б) Допустим, что искомое событие A произошло - извлечена ис-правная микросхема. Найдем ве-ро-ятность P A (B 2) того, что эта микро-схема извлечена из второго набора. Согласно формулы Бейеса,

Ответ : а) 0,825; б) 17/55.

Пример 2.17. Из 10 учеников, которые пришли на экзамен по ма-тематике, трое подготовились от-лично, четверо - хорошо, двое - удовлетворительно, а один совсем не готовился. В билетах 20 вопро-сов. Отлично подготовившиеся ученики могут ответить на все 20 во-просов, хорошо - на 16 вопросов, удовлетворительно - на 10, и непод-готовившийся - на 5 вопросов. Каждый ученик получает наугад 3 во-проса из 20. Ученик, приглашенный первым, ответил на все 3 вопроса. Какова вероятность того, что он отличник?

P A (B 1). По фор-муле Бейеса P A (B 1) = » 0,58.

Как видим, искомая вероятность сравнительно не велика, Поэтому учителю придется предложить ученику еще несколько дополнитель-ных вопросов. Ответ : 0,58.

Теорема. (Умножения вероятностей) Вероятность произведения двух событий (совместного появления этих событий) равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое событие уже наступило.

Также можно записать:

Доказательство этой теоремы непосредственно вытекает из определения условной вероятности.

Если события независимые, то , и теорема умножения вероятностей принимает вид:

В случае произведения нескольких зависимых событий вероятность равна произведению одного из них на условные вероятности всех остальных при условии, что вероятность каждого последующего вычисляется в предположении, что все остальные события уже совершились.

Из теоремы произведения вероятностей можно сделать вывод о вероятности появления хотя бы одного события .

Если в результате испытания может появиться п событий, независимых в совокупности, то вероятность появления хотя бы одного из них равна

Здесь событие А обозначает наступление хотя бы одного из событий A i , а q i – вероятность противоположных событий .

Пример 1. Из полной колоды карт (52 шт.) одновременно вынимают четыре карты. Найти вероятность того, что среди этих четырех карт будет хотя бы одна бубновая или одна червонная карта.



Решение.

Обозначим появление хотя бы одной бубновой карты – событие А , появление хотя бы одной червонной карты – событие В . Таким образом нам надо определить вероятность события С = А + В .

Кроме того, события А и В – совместны, т.е. появление одного из них не исключает появления другого.

Всего в колоде 13 червонных и 13 бубновых карт.

Найдем вероятность события, противоположного событию С (среди извлеченных карт не будет ни бубновых ни червовых):

при вытаскивании первой карты вероятность того, что не появится ни червонной ни бубновой карты равна , при вытаскивании второй карты - , третьей - , четвертой - .

Тогда вероятность того, что среди вынутых карт не будет ни бубновых, ни червонных равна .

Искомая вероятность

Пример 2. Чему равна вероятность того, что при бросании трех игральных костей 6 очков появится хотя бы на одной из костей?

Решение .

Вероятность выпадения 6 очков при одном броске кости равна . Вероятность того, что не выпадет 6 очков - . Вероятность того, что при броске трех костей не выпадет ни разу 6 очков равна .

Тогда вероятность того, что хотя бы один раз выпадет 6 очков равна .

Пример 3. В барабане револьвера находятся 4 патрона из шести в произвольном порядке. Барабан раскручивают, после чего нажимают на спусковой крючок два раза. Найти вероятности: а) хотя бы одного выстрела, б) двух выстрелов, в) двух осечек.

Решение .

Вероятность выстрела при первом нажатии на курок (событие А ) равна , вероятность осечки - Вероятность выстрела при втором нажатии на курок зависит от результата первого нажатия.

Так если в первом случае произошел выстрел, то в барабане осталось только 3 патрона, причем они распределены по 5 гнездам, т.к. при втором нажатии на курок напротив ствола не может оказаться гнездо, в котором был патрон при первом нажатии на курок.

Условная вероятность выстрела при второй попытке - если в первый раз был выстрел, - если в первый раз произошла осечка.

Условная вероятность осечки во второй раз - , если в первый раз произошел выстрел, - если в первый раз была осечка.

Рассмотрим вероятности того, что во втором случае произойдет выстрел (событие В ) или произойдет осечка (событие ) при условии, что в первом случае произошел выстрел (событие А ) или осечка (событие ).

Два выстрела подряд

Первая осечка, второй выстрел

Первый выстрел, вторая осечка

Две осечки подряд

Эти четыре случая образуют полную группу событий (сумма их вероятностей равна единице)

Анализируя полученные результаты, видим, что вероятность хотя бы одного выстрела равна сумме

Пример 4. Два стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,7, а для второго – 0,8. Найти вероятность того, что при одном залпе в мишень попадает только один из стрелков.

Решение .

Обозначим попадание в цель первым стрелком – событие А, вторым – событие В, промах первого стрелка – событие , промах второго – событие .

Вероятность того, что первый стрелок попадет в мишень, а второй – нет равна

Вероятность того, что второй стрелок попадет в цель, а первый – нет равна

Тогда вероятность попадания в цель только одним стрелком равна

Тот же результат можно получить другим способом – находим вероятности того, что оба стрелка попали в цель и оба промахнулись. Эти вероятности соответственно равны:

Тогда вероятность того, что в цель попадет только один стрелок равна:

Пример 5. Вероятность того, что взятая наугад деталь из некоторой партии деталей, будет бракованной равна 0,2. Найти вероятность того, что из трех взятых деталей 2 окажется не бракованными.

Решение .

Обозначим бракованную деталь – событие А, не бракованную – событие .

Если среди трех деталей оказывается только одна бракованная, то это возможно в одном из трех случаев: бракованная деталь будет первой, второй или третьей.

Пример 6. Вероятности того, что нужная деталь находится в первом, втором, третьем или четвертом ящике, соответственно равны 0,6, 0,7, 0,8, 0,9. Найти вероятности того, что эта деталь находится: а) не более, чем в трех ящиках; б) не менее, чем в двух ящиках.

Решение .

а) Вероятность того, что данная деталь находится во всех четырех ящиках, равна

Вероятность того, что нужная деталь находиться не более, чем в трех ящиках равна вероятности того, что она не находится во всех четырех ящиках.

б) Вероятность того, что нужная деталь находится не менее, чем в двух ящиках, складывается из вероятностей того, что деталь находиться только в двух ящиках, только в трех ящиках, только в четырех ящиках. Конечно, эти вероятности можно посчитать, а потом сложить, однако, проще поступить иначе. Та же вероятность равна вероятности того, что деталь не находится только в одном ящике и имеется вообще.