Что такое кэш 1 го уровня. Влияние кэш-памяти на производительность компьютера. Значит, кэш умеет сохранять только самые требуемые данные

Речь идет не о наличности, а о кэш -памяти процессоров и не только. Из объема кэш -памяти торгаши сделали очередной коммерческий фетиш, в особенности с кэшем центральных процессоров и жестких дисков (у видеокарт он тоже есть – но до него пока не добрались). Итак, есть процессор ХХХ с кэшем L2 объемом 1Мб, и точно такой же процессор XYZ с кэшем объемом 2Мб. Угадайте какой лучше? Аа – вот не надо так сразу!

Кэш -память – это буфер, куда складывается то, что можно и/или нужно отложить на потом. Процессор выполняет работу и возникают ситуации, когда промежуточные данные нужно где-то сохранить. Ну конечно в кэше! – ведь он на порядки быстрее, чем оперативная память, т.к. он в самом кристалле процессора и обычно работает на той же частоте. А потом, через какое то время, эти данные он выудит обратно и будет снова их обрабатывать. Грубо говоря как сортировщик картошки на конвейере, который каждый раз, когда попадается что-то другое кроме картошки (морковка ) , бросает ее в ящик. А когда тот полон – встает и выносит его в соседнюю комнату. В этот момент конвейер стоит и наблюдается простой. Объем ящика и есть кэш в данной аналогии. И сколько его надо – 1Мб или 12? Понятно, что если его объем мал придется слишком много времени уделят выносу и будет простой, но с какого то объема его дальнейшее увеличение ничего не даст. Ну будет ящик у сортировщика на 1000кг морковки – да у него за всю смену столько ее не будет и от этого он НЕ СТАНЕТ В ДВА РАЗА БЫСТРЕЕ! Есть еще одна тонкость – большой кэш может вызывать увеличение задержек обращения к нему во-первых, а заодно повышается и вероятность возникновения ошибок в нем, например при разгоне – во-вторых. (о том КАК в этом случае определить стабильность/нестабильность процессора и выяснить что ошибка возникает именно в его кэше, протестировать L1 и L2 – можно прочесть тут.) В-третьих – кэш выжирает приличную площадь кристалла и транзисторный бюджет схемы процессора. То же самое касается и кэш памяти жестких дисков. И если архитектура процессора сильная – у него будет востребовано во многих приложениях 1024Кб кэша и более. Если у вас быстрый HDD – 16Мб или даже 32Мб уместны. Но никакие 64Мб кэша не сделают его быстрее, если это обрезок под названием грин версия (Green WD) с частотой оборотов 5900 вместо положеных 7200, пусть даже у последнего будет и 8Мб. Потом процессоры Intel и AMD по-разному используют этот кэш (вообще говоря AMD более эффективно и их процессоры часто комфортно довольствуются меньшими значениями). Вдобавок у Intel кэш общий, а вот у AMD он персональный у каждого ядра. Самый быстрый кэш L1 у процессоров AMD составляет по 64Кб на данные и инструкции, что вдвое больше, чем у Intel. Кэш третьего уровня L3 обычно присутствует у топовых процессоров наподобие AMD Phenom II 1055T X6 Socket AM3 2.8GHz или у конкурента в лице Intel Core i7-980X. Прежде всего большие объемы кэша любят игры. И кэш НЕ любят многие профессиональные приложения (см. Компьютер для рендеринга, видеомонтажа и профприложений). Точнее наиболее требовательные к нему вообще равнодушны. Но чего точно не стоит делать, так это выбирать процессор по объему кэша. Старенький Pentium 4 в последних своих проявлениях имел и по 2Мб кэша при частотах работы далеко за 3ГГц – сравните его производительность с дешевеньким двуядерничком Celeron E1***, работающим на частотах около 2ГГц. Он не оставит от старичка камня на камне. Более актуальный пример – высокочастотный двухъядерник E8600 стоимостью чуть не 200$ (видимо из-за 6Мб кэша) и Athlon II X4-620 2,6ГГц, у которого всего 2Мб. Это не мешает Атлону разделать конкурента под орех.

Как видно на графиках – ни в сложных программах, ни в требовательных к процессору играх никакой кэш не заменит дополнительных ядер. Athlon с 2Мб кэша (красный) легко побеждает Cor2Duo с 6Мб кэша даже при меньшей частота и чуть не вдвое меньшей стоимости. Так же многие забывают, что кэш присутствует в видеокартах, потому что в них, вообще говоря, тоже есть процессоры. Свежий пример видеокарта GTX460, где умудряются не только порезать шину и объем памяти (о чем покупатель догадается) – но и КЭШ шейдеров соответственно с 512Кб до 384Кб (о чем покупатель уже НЕ догадается). А это тоже добавит свой негативный вклад в производительность. Интересно еще будет выяснить зависимость производительности от объема кэша. Исследуем как быстро она растет с увеличением объема кэша на примере одного и того же процессора. Как известно процессоры серии E6*** , E4*** и E2*** отличаются только объемом кэша (по 4, 2 и 1 Мб соответственно). Работая на одинаковой частоте 2400МГц они показывают следующие результаты.

Как видно – результаты не слишком отличаются. Скажу больше – если бы участвовал процессор с объемом 6Мб – результат увеличился бы еще на чуть-чуть, т.к. процессоры достигают насыщения. А вот для моделей с 512Кб падение было бы ощутимым. Другими словами 2Мб даже в играх вполне достаточно. Резюмируя можно сделать такой вывод – кэш это хорошо, когда УЖЕ много всего остального. Наивно и глупо менять скорость оборотов винчестера или количество ядер процессора на объем кэша при равной стоимости, ибо даже самый емкий ящик для сортировки не заменит еще одного сортировщика Но есть и хорошие примеры.. Например Pentium Dual-Core в ранней ревизии по 65-нм процессу имел 1Мб кэша на два ядра (серия E2160 и подобные), а поздняя 45-нм ревизия серии E5200 и дальше имеет уже 2Мб при прочих равных условиях (а главное – ЦЕНЕ). Конечно же стоит выбирать именно последний.

Всем доброго времени суток. Сегодня мы постараемся растолковать вам такое понятие как кэш. Кэш память процессора – это сверхбыстрый массив обработки данных, скорость которого превышает показатели стандартной ОЗУ раз так в 16–17, если речь идет о DDR4.

Из этой статьи вы узнаете:

Именно объем кэш-памяти позволяет ЦП работать на предельных скоростях, не дожидаясь, пока оперативная память обработает какие-либо данные и не отправит результаты готовых вычислений чипу для дальнейшей их обработки. Аналогичный принцип прослеживается в HDD, только там используется буфер на 8–128 МБ. Другое дело, что скорости гораздо ниже, но процесс работы аналогичен.

Что такое кэш процессора?

Как вообще происходит процесс вычислений? Все данные хранятся в оперативной памяти, которая предназначена для временного хранения важной пользовательской и системной информации. Процессор выбирает для себя определенное количество задач, которые загоняются в сверхбыстрый блок, именуемый кэш-памятью, и начинает заниматься своими прямыми обязанностями.

Результаты вычислений снова отправляются в ОЗУ, но уже в гораздо меньшем количестве (вместо тысячи значений на выходе получаем куда меньше), а на обработку берется новый массив. И так до тех пор, пока работа не будет сделана.

Скорость работы определяется эффективностью оперативной памяти. Но ни один современный модуль DDR4, включая оверклокерские решения с частотами под 4000 МГц, и рядом не стоял с возможностями самого чахлого процессора с его «медленным» КЭШем.

Все потому, что скорость работы ЦП превышает показатели работы ОЗУ в среднем раз в 15, а то и выше. И не смотрите только на параметры частоты, помимо них отличий хватает.
В теории получается, что даже сверхмощные Intel Xeon и AMD Epyc вынуждены простаивать, но по факту оба серверных чипа работают на пределе возможностей. А все потому, что они набирают необходимое количество данных по величине кэша (вплоть до 60 и более МБ) и моментально обрабатывают данные. ОЗУ служит в качестве некоего склада, откуда черпаются массивы для вычислений. Эффективность вычислений компьютера возрастает и все довольны.

Краткий экскурс в историю

Первые упоминания о кэш-памяти датированы концом 80‑х годов. До этого времени скорость работы процессора и памяти были приблизительно одинаковой. Стремительное развитие чипов требовало придумать какой-нибудь «костыль», чтобы повысить уровень быстродействия ОЗУ, однако использовать сверхбыстрые чипы было очень затратно, а потому решились обойтись более экономичным вариантом – внедрением скоростного массива памяти в ЦП.

Впервые модуль кэш-памяти появился в Intel 80386. В то время задержки при работе DRAM колебались в пределах 120 наносекунд, в то время как более современный модуль SRAM сокращал время задержек до внушительных по тем временам 10 наносекунд. Примерная картина более наглядно продемонстрирована в противостоянии HDD против SSD.

Изначально кэш-память распаивалась прямиком на материнских платах, ввиду уровня техпроцесса того времени. Начиная с Intel 80486 8 кб памяти было внедрено непосредственно в кристалл процессора, что дополнительно увеличивало производительность и снижало площадь кристалла.

Данная технология расположения оставалась актуальной лишь до выхода Pentium MMX, после чего SRAM-память была заменена более прогрессивной SDRAM.
Да и процессоры стали гораздо меньше, а потому надобность во внешних схемах отпала.

Уровни кэш-памяти

На маркировке современных ЦП, помимо и , можно встретить такое понятие как размер кэша 1,2 и 3 уровней. Как он определяется и на что влияет? Давайте разбираться простым языком.

  • Кэш первого уровня (L1) – самая важная и быстрая микросхема в архитектуре ЦП. Один процессор может вместить количество модулей, равных числу ядер. Примечательно, что микросхема может хранить в памяти самые востребованные и важные данные только со своего ядра. Объем массива зачастую ограничен показателем в 32–64 КБ.
  • Кэш второго уровня (L2) – падение скорости компенсируется увеличением объема буфера, который доходит до 256, а то и 512 КБ. Принцип действия такой же, как и у L1, а вот частота запроса к памяти ниже, ввиду хранения в ней менее приоритетных данных.
  • Кэш третьего уровня (L3) – самый медленный и объемный раздел среди всех перечисленных. И все равно этот массив гораздо быстрее оперативной памяти. Размер может достигать 20, и даже 60 МБ, если речь касается серверных чипов. Польза от массива огромна: он является ключевым звеном обмена данными между всеми ядрами системы. Без L3 все элементы чипа были бы разрознены.

В продаже можно встретить как двух- так и трехуровневую структуру памяти. Какая из них лучше? Если вы используете процессор лишь для офисных программ и казуальных игр, то никакой разницы не почувствуете. Если же система собирается с прицелом под сложные 3D-игры, архивацию, рендеринг и работу с графикой, то прирост в некоторых случаях будет колебаться от 5 до 10%.
Кэш третьего уровня оправдан лишь в том случае, если вы намерены регулярно работать с многопоточными приложениями, требующими регулярные сложные расчеты. По этой причине в серверных моделях нередко используют кэш L3 больших объемов. Хотя бывают случаи, что и этого не хватает, а потому приходится дополнительно ставить так называемые модули L4, которые выглядят как отдельная микросхема, подключаемая к материнской плате.

Как узнать количество уровней и размер кэша на своем процессоре?

Начнем с того, что сделать это можно 3 способами:

  • через командную строку (только кэш L2 и L3);
  • путем поиска спецификаций в интернете;
  • с помощью сторонних утилит.

Если взять за основу тот факт, что у большинства процессоров L1 составляет 32 КБ, а L2 и L3 могут колебаться в широких пределах, последние 2 значения нам и нужны. Для их поиска открываем командную строку через «Пуск» (вводим значение «cmd» через строку поиска).

Система покажет подозрительно большое значение для L2. Необходимо поделить его на количество ядер процессора и узнать итоговый результат.

Если вы собрались искать данные в сети, то для начала узнайте точное имя ЦП. Нажмите правой кнопкой по иконке «Мой компьютер» и выберите пункт «Свойства». В графе «Система» будет пункт «Процессор», который нам, собственно, нужен. Переписываете его название в тот же Google или Yandex и смотрите значение на сайтах. Для достоверной информации лучше выбирать официальные порталы производителя (Intel или AMD).
Третий способ также не вызывает проблем, но требует установки дополнительного софта вроде GPU‑Z, AIDA64 и прочих утилит для изучения спецификаций камня. Вариант для любителей разгона и копошения в деталях.

Итоги

Теперь вы понимаете, что такое кэш-память, от чего зависит ее объем, и для каких целей используется сверхбыстрый массив данных. На данный момент наиболее интересными решениями на рынке в плане большого объема кэш-памяти, можно назвать устройства AMD Ryzen 5 и 7 с их 16 МБ L3.

В следующих статьях осветим такие темы как процессоров, пользу от чипов и не только. и оставайтесь с нами. До новых встреч, пока.

Одним из немаловажных факторов повышающих производительность процессора, является наличие кэш-памяти, а точнее её объём, скорость доступа и распределение по уровням.

Уже достаточно давно практически все процессоры оснащаются данным типом памяти, что ещё раз доказывает полезность её наличия. В данной статье, мы поговорим о структуре, уровнях и практическом назначении кэш-памяти, как об очень немаловажной характеристике процессора.

Что такое кэш-память и её структура

Кэш-память – это сверхбыстрая память используемая процессором, для временного хранения данных, которые наиболее часто используются. Вот так, вкратце, можно описать данный тип памяти.

Кэш-память построена на триггерах, которые, в свою очередь, состоят из транзисторов. Группа транзисторов занимает гораздо больше места, нежели те же самые конденсаторы, из которых состоит оперативная память. Это тянет за собой множество трудностей в производстве, а также ограничения в объёмах. Именно поэтому кэш память является очень дорогой памятью, при этом обладая ничтожными объёмами. Но из такой структуры, вытекает главное преимущество такой памяти – скорость. Так как триггеры не нуждаются в регенерации, а время задержки вентиля, на которых они собраны, невелико, то время переключения триггера из одного состояния в другое происходит очень быстро. Это и позволяет кэш-памяти работать на таких же частотах, что и современные процессоры.

Также, немаловажным фактором является размещение кэш-памяти. Размещена она, на самом кристалле процессора, что значительно уменьшает время доступа к ней. Ранее, кэш память некоторых уровней, размещалась за пределами кристалла процессора, на специальной микросхеме SRAM где-то на просторах материнской платы. Сейчас же, практически у всех процессоров, кэш-память размещена на кристалле процессора.

Для чего нужна кэш-память процессора?

Как уже упоминалось выше, главное назначение кэш-памяти – это хранение данных, которые часто используются процессором. Кэш является буфером, в который загружаются данные, и, несмотря на его небольшой объём, (около 4-16 Мбайт) в современных процессорах, он дает значительный прирост производительности в любых приложениях.

Чтобы лучше понять необходимость кэш-памяти, давайте представим себе организацию памяти компьютера в виде офиса. Оперативная память будет являть собою шкаф с папками, к которым периодически обращается бухгалтер, чтобы извлечь большие блоки данных (то есть папки). А стол, будет являться кэш-памятью.

Есть такие элементы, которые размещены на столе бухгалтера, к которым он обращается в течение часа по несколько раз. Например, это могут быть номера телефонов, какие-то примеры документов. Данные виды информации находятся прямо на столе, что, в свою очередь,увеличивает скорость доступа к ним.

Точно так же, данные могут добавиться из тех больших блоков данных (папок), на стол, для быстрого использования, к примеру, какой-либо документ. Когда этот документ становится не нужным, его помещают назад в шкаф (в оперативную память), тем самым очищая стол (кэш-память) и освобождая этот стол для новых документов, которые будут использоваться в последующий отрезок времени.

Также и с кэш-памятью, если есть какие-то данные, к которым вероятнее всего будет повторное обращение, то эти данные из оперативной памяти, подгружаются в кэш-память. Очень часто, это происходит с совместной загрузкой тех данных, которые вероятнее всего, будут использоваться после текущих данных. То есть, здесь присутствует наличие предположений о том, что же будет использовано «после». Вот такие непростые принципы функционирования.

Уровни кэш-памяти процессора

Современные процессоры, оснащены кэшем, который состоит, зачастую из 2–ух или 3-ёх уровней. Конечно же, бывают и исключения, но зачастую это именно так.

В общем, могут быть такие уровни: L1 (первый уровень), L2 (второй уровень), L3 (третий уровень). Теперь немного подробнее по каждому из них:

Кэш первого уровня (L1) – наиболее быстрый уровень кэш-памяти, который работает напрямую с ядром процессора, благодаря этому плотному взаимодействию, данный уровень обладает наименьшим временем доступа и работает на частотах близких процессору. Является буфером между процессором и кэш-памятью второго уровня.

Мы будем рассматривать объёмы на процессоре высокого уровня производительности Intel Core i7-3770K. Данный процессор оснащен 4х32 Кб кэш-памяти первого уровня 4 x 32 КБ = 128 Кб. (на каждое ядро по 32 КБ)

Кэш второго уровня (L2) – второй уровень более масштабный, нежели первый, но в результате, обладает меньшими «скоростными характеристиками». Соответственно, служит буфером между уровнем L1 и L3. Если обратиться снова к нашему примеру Core i7-3770 K, то здесь объём кэш-памяти L2 составляет 4х256 Кб = 1 Мб.

Кэш третьего уровня (L3) – третий уровень, опять же, более медленный, нежели два предыдущих. Но всё равно он гораздо быстрее, нежели оперативная память. Объём кэша L3 в i7-3770K составляет 8 Мбайт. Если два предыдущих уровня разделяются на каждое ядро, то данный уровень является общим для всего процессора. Показатель довольно солидный, но не заоблачный. Так как, к примеру, у процессоров Extreme-серии по типу i7-3960X, он равен 15Мб, а у некоторых новых процессоров Xeon, более 20.

we-it.net

Для чего нужен кэш и сколько его необходимо?

Речь идет не о наличности, а о кэш-памяти процессоров и не только. Из объема кэш-памяти торгаши сделали очередной коммерческий фетиш, в особенности с кэшем центральных процессоров и жестких дисков (у видеокарт он тоже есть – но до него пока не добрались). Итак, есть процессор ХХХ с кэшем L2 объемом 1Мб, и точно такой же процессор XYZ с кэшем объемом 2Мб. Угадайте какой лучше? Аа – вот не надо так сразу!

Кэш-память – это буфер, куда складывается то, что можно и/или нужно отложить на потом. Процессор выполняет работу и возникают ситуации, когда промежуточные данные нужно где-то сохранить. Ну конечно в кэше! – ведь он на порядки быстрее, чем оперативная память, т.к. он в самом кристалле процессора и обычно работает на той же частоте. А потом, через какое то время, эти данные он выудит обратно и будет снова их обрабатывать. Грубо говоря как сортировщик картошки на конвейере, который каждый раз, когда попадается что-то другое кроме картошки (морковка) , бросает ее в ящик. А когда тот полон – встает и выносит его в соседнюю комнату. В этот момент конвейер стоит и наблюдается простой. Объем ящика и есть кэш в данной аналогии. И сколько его надо – 1Мб или 12? Понятно, что если его объем мал придется слишком много времени уделят выносу и будет простой, но с какого то объема его дальнейшее увеличение ничего не даст. Ну будет ящик у сортировщика на 1000кг морковки – да у него за всю смену столько ее не будет и от этого он НЕ СТАНЕТ В ДВА РАЗА БЫСТРЕЕ! Есть еще одна тонкость – большой кэш может вызывать увеличение задержек обращения к нему во-первых, а заодно повышается и вероятность возникновения ошибок в нем, например при разгоне – во-вторых. (о том КАК в этом случае определить стабильность/нестабильность процессора и выяснить что ошибка возникает именно в его кэше, протестировать L1 и L2 – можно прочесть тут.) В-третьих – кэш выжирает приличную площадь кристалла и транзисторный бюджет схемы процессора. То же самое касается и кэш памяти жестких дисков. И если архитектура процессора сильная – у него будет востребовано во многих приложениях 1024Кб кэша и более. Если у вас быстрый HDD – 16Мб или даже 32Мб уместны. Но никакие 64Мб кэша не сделают его быстрее, если это обрезок под названием грин версия (Green WD) с частотой оборотов 5900 вместо положеных 7200, пусть даже у последнего будет и 8Мб. Потом процессоры Intel и AMD по-разному используют этот кэш (вообще говоря AMD более эффективно и их процессоры часто комфортно довольствуются меньшими значениями). Вдобавок у Intel кэш общий, а вот у AMD он персональный у каждого ядра. Самый быстрый кэш L1 у процессоров AMD составляет по 64Кб на данные и инструкции, что вдвое больше, чем у Intel. Кэш третьего уровня L3 обычно присутствует у топовых процессоров наподобие AMD Phenom II 1055T X6 Socket AM3 2.8GHz или у конкурента в лице Intel Core i7-980X. Прежде всего большие объемы кэша любят игры. И кэш НЕ любят многие профессиональные приложения (см. Компьютер для рендеринга, видеомонтажа и профприложений). Точнее наиболее требовательные к нему вообще равнодушны. Но чего точно не стоит делать, так это выбирать процессор по объему кэша. Старенький Pentium 4 в последних своих проявлениях имел и по 2Мб кэша при частотах работы далеко за 3ГГц – сравните его производительность с дешевеньким двуядерничком Celeron E1***, работающим на частотах около 2ГГц. Он не оставит от старичка камня на камне. Более актуальный пример – высокочастотный двухъядерник E8600 стоимостью чуть не 200$ (видимо из-за 6Мб кэша) и Athlon II X4-620 2,6ГГц, у которого всего 2Мб. Это не мешает Атлону разделать конкурента под орех.

Как видно на графиках – ни в сложных программах, ни в требовательных к процессору играх никакой кэш не заменит дополнительных ядер. Athlon с 2Мб кэша (красный) легко побеждает Cor2Duo с 6Мб кэша даже при меньшей частота и чуть не вдвое меньшей стоимости. Так же многие забывают, что кэш присутствует в видеокартах, потому что в них, вообще говоря, тоже есть процессоры. Свежий пример видеокарта GTX460, где умудряются не только порезать шину и объем памяти (о чем покупатель догадается) – но и КЭШ шейдеров соответственно с 512Кб до 384Кб (о чем покупатель уже НЕ догадается). А это тоже добавит свой негативный вклад в производительность. Интересно еще будет выяснить зависимость производительности от объема кэша. Исследуем как быстро она растет с увеличением объема кэша на примере одного и того же процессора. Как известно процессоры серии E6*** , E4*** и E2*** отличаются только объемом кэша (по 4, 2 и 1 Мб соответственно). Работая на одинаковой частоте 2400МГц они показывают следующие результаты.

Как видно – результаты не слишком отличаются. Скажу больше – если бы участвовал процессор с объемом 6Мб – результат увеличился бы еще на чуть-чуть, т.к. процессоры достигают насыщения. А вот для моделей с 512Кб падение было бы ощутимым. Другими словами 2Мб даже в играх вполне достаточно. Резюмируя можно сделать такой вывод – кэш это хорошо, когда УЖЕ много всего остального. Наивно и глупо менять скорость оборотов винчестера или количество ядер процессора на объем кэша при равной стоимости, ибо даже самый емкий ящик для сортировки не заменит еще одного сортировщика Но есть и хорошие примеры.. Например Pentium Dual-Core в ранней ревизии по 65-нм процессу имел 1Мб кэша на два ядра (серия E2160 и подобные), а поздняя 45-нм ревизия серии E5200 и дальше имеет уже 2Мб при прочих равных условиях (а главное – ЦЕНЕ). Конечно же стоит выбирать именно последний.

compua.com.ua

Что такое кэш, зачем он нужен и как работает

Что является самым грязным местом на компьютере? Думаете, корзина? Папки пользователя? Система охлаждения? Не угадали! Самое грязное место – это кэш! Ведь его постоянно приходится чистить!

На самом деле кэшей на компьютере много, и служат они не свалкой отходов, а ускорителями оборудования и приложений. Откуда же у них репутация «системного мусоропровода»? Давайте разберемся, что такое кэш, каким он бывает, как работает и почему время от времени нуждается в чистке.

Кэшем или кэш-памятью называют специальное хранилище часто используемых данных, доступ к которому осуществляется в десятки, сотни и тысячи раз быстрее, чем к оперативной памяти или другому носителю информации.

Собственная кэш-память есть у приложений (веб-браузеров, аудио- и видеоплееров, редакторов баз данных и т. д.), компонентов операционных систем (кэш эскизов, DNS-кэш) и оборудования (cache L1-L3 центрального процессора, фреймбуфер графического чипа, буферы накопителей). Реализована она по-разному – программно и аппаратно.

  • Кеш программ – это просто отдельная папка или файл, куда загружаются, например, картинки, меню, скрипты, мультимедийный контент и прочее содержимое посещенных сайтов. Именно в такую папку в первую очередь «ныряет» браузер, когда вы открываете веб-страницу повторно. Подкачка части контента из локального хранилища ускоряет ее загрузку и уменьшает сетевой трафик.

  • В накопителях (в частности, жестких дисках) кэш представляет собой отдельный чип RAM емкостью 1-256 Mb, расположенный на плате электроники. В него поступает информация, считанная с магнитного слоя и пока не загруженная в оперативную память, а также данные, которые чаще всего запрашивает операционная система.

  • Современный центральный процессор содержит 2-3 основных уровня кеш-памяти (ее также называют сверхоперативной памятью), размещенных в виде аппаратных модулей на одном с ним кристалле. Самым быстрым и наименьшим по объему (32-64 Kb) является cache Level 1 (L1) – он работает на той же частоте, что и процессор. L2 занимает среднее положение по скорости и емкости (от 128 Kb до 12 Mb). А L3 – самый медленный и объемный (до 40 Mb), на некоторых моделях отсутствует. Скорость L3 является низкой лишь относительно его более быстрых собратьев, но и он в сотни раз шустрее самой производительной оперативки.

Сверхоперативная память процессора применяется для хранения постоянно используемых данных, перекачанных из ОЗУ, и инструкций машинного кода. Чем ее больше, тем процессор быстрее.

Сегодня три уровня кеширования – уже не предел. С появлением архитектуры Sandy Bridge корпорация Intel реализовала в своей продукции дополнительный cache L0 (предназначенный для хранения расшифрованных микрокоманд). А наиболее высокопроизводительные ЦП имеют и кэш четвертого уровня, выполненный в виде отдельной микросхемы.

Схематично взаимодействие уровней cache L0-L3 выглядит так (на примере Intel Xeon):

Человеческим языком о том, как всё это работает

Чтобы было понятно, как функционирует кэш-память, представим человека, работающего за письменным столом. Папки и документы, которые он использует постоянно, лежат на столе (в кэш-памяти). Для доступа к ним достаточно протянуть руку.

Бумаги, которые нужны ему реже, хранятся недалеко на полках (в оперативной памяти). Чтобы их достать, нужно встать и пройти несколько метров. А то, с чем человек в настоящее время не работает, сдано в архив (записано на жесткий диск).

Чем шире стол, тем больше документов на нем поместится, а значит, работник сможет получить быстрый доступ к большему объему информации (чем емкость кэша больше, тем в теории быстрее работает программа или устройство).

Иногда он допускает ошибки – хранит на столе бумаги, в которых содержатся неверные сведения, и использует их в работе. В результате качество его труда снижается (ошибки в кэше приводят к сбоям в работе программ и оборудования). Чтобы исправить ситуацию, работник должен выбросить документы с ошибками и положить на их место правильные (очистить кэш-память).

Стол имеет ограниченную площадь (кэш-память имеет ограниченный объем). Иногда ее можно расширить, например, придвинув второй стол, а иногда нельзя (объем кэша можно увеличить, если такая возможность предусмотрена программой; кэш оборудования изменить нельзя, так как он реализован аппаратно).

Другой способ ускорить доступ к большему объему документов, чем вмещает стол – найти помощника, который будет подавать работнику бумаги с полки (операционная система может выделить часть неиспользуемой оперативной памяти для кэширования данных устройств). Но это всё равно медленнее, чем брать их со стола.

Документы, лежащие под рукой, должны быть актуальны для текущих задач. За этим обязан следить сам работник. Наводить порядок в бумагах нужно регулярно (вытеснение неактуальных данных из кэш-памяти ложится «на плечи» приложений, которые ее используют; некоторые программы имеют функцию автоматической очистки кэша).

Если сотрудник забывает поддерживать порядок на рабочем месте и следить за актуальностью документации, он может нарисовать себе график уборки стола и использовать его, как напоминание. В крайнем случае – поручить это помощнику (если зависимое от кэш-памяти приложение стало работать медленнее или часто загружает неактуальные данные, используйте средства очистки кэша по расписанию или раз в несколько дней проводите эту манипуляцию вручную).

С «функциями кэширования» мы на самом деле сталкиваемся повсеместно. Это и покупка продуктов впрок, и различные действия, которые мы совершаем мимоходом, заодно и т. д. По сути, это всё то, что избавляет нас от лишней суеты и ненужных телодвижений, упорядочивает быт и облегчает труд. То же самое делает и компьютер. Словом, если бы не было кэша, он бы работал в сотни и тысячи раз медленнее. И нам бы вряд ли это понравилось.

f1comp.ru

Кэш, кеш, cash - память. Для чего нужна кэш память? Влияние размера и скорости кэша на производительность.

Кэш - память (кеш, cash, буфер - eng.) - применяется в цифровых устройствах, как высокоскоростной буфер обмена. Кэш память можно встретить на таких устройствах компьютера как жёсткие диски, процессоры, видеокарты, сетевые карты, приводы компакт дисков и многих других.

Принцип работы и архитектура кэша могут сильно отличаться.

К примеру, кэш может служить как обычный буфер обмена. Устройство обрабатывает данные и передаёт их в высокоскоростной буфер, где контроллёр передаёт данные на интерфейс. Предназначен такой кэш для предотвращения ошибок, аппаратной проверки данных на целостность, либо для кодировки сигнала от устройства в понятный сигнал для интерфейса, без задержек. Такая система применяется например в CD/DVD приводах компакт дисков.

В другом случае, кэш может служить для хранения часто используемого кода и тем самым ускорения обработки данных. То есть, устройству не нужно снова вычислять или искать данные, что заняло бы гораздо больше времени, чем чтение их из кэш-а. В данном случае очень большую роль играет размер и скорость кэш-а.


Такая архитектура чаще всего встречается на жёстких дисках, SSD накопителях и центральных процессорах (CPU).

При работе устройств, в кэш могут загружаться специальные прошивки или программы диспетчеры, которые работали бы медленней с ПЗУ (постоянное запоминающее устройство).

Большинство современных устройство, используют смешанный тип кэша, который может служить как буфером обмена, как и для хранения часто используемого кода.

Существует несколько очень важных функций, реализуемых для кэша процессоров и видео чипов.

Объединение исполнительных блоков. В центральных процессорах и видео процессорах часто используется быстрый общий кэш между ядрами. Соответственно, если одно ядро обработало информацию и она находится в кэше, а поступает команда на такую же операцию, либо на работу с этими данными, то данные не будут снова обрабатываться процессором, а будут взяты из кэша для дальнейшей обработки. Ядро будет разгружено для обработки других данных. Это значительно увеличивает производительность в однотипных, но сложных вычислениях, особенно если кэш имеет большой объём и скорость.

Общий кэш, также позволяет ядрам работать с ним напрямую, минуя медленную оперативную память.

Кэш для инструкций. Существует либо общий очень быстрый кэш первого уровня для инструкций и других операций, либо специально выделенный под них. Чем больше в процессоре заложенных инструкций, тем больший кэш для инструкций ему требуется. Это уменьшает задержки памяти и позволяет блоку инструкций функционировать практически независимо.При его заполнении, блок инструкций начинает периодически простаивать, что замедляет скорость вычисления.

Другие функции и особенности.

Примечательно, что в CPU (центральных процессорах), применяется аппаратная коррекция ошибок (ECC), потому как небольшая ошибочка в кэше, может привести к одной сплошной ошибке при дальнейшей обработке этих данных.

В CPU и GPU существует иерархия кэш памяти, которая позволяет разделять данные для отдельных ядер и общие. Хотя почти все данные из кэша второго уровня, всё равно копируются в третий, общий уровень, но не всегда. Первый уровень кеша - самый быстрый, а каждый последующий всё медленней, но больше по размеру.

Для процессоров, нормальным считается три и менее уровней кэша. Это позволяет добиться сбалансированности между скоростью, размером кэша и тепловыделением. В видеопроцессорах сложно встретить более двух уровней кэша.

Размер кэша, влияние на производительность и другие характеристики.

Естественно, чем больше кэш, тем больше данных он может хранить и обрабатывать, но тут есть серьёзная проблема.

Большой кеш - это большой транзисторный бюджет. В серверных процессорах (CPU), кэш может использовать до 80% транзисторного бюджета. Во первых, это сказывается на конечной стоимости, а во вторых увеличивается энергопотребление и тепловыделение, которое не сопоставимо с увеличенной на несколько процентов производительностью.

Первым процессором, который производился с кэшем L2, стал Pentium Pro в 1995 году. У него было 256 или 512 кбайт кэша второго уровня на кристалле, что давало существенное преимущество над обычными процессорами Pentium, чей кэш располагался на материнской плате. С появлением Pentium II в модуле Slot 1 выделенная кэш-память "поселилась" рядом с процессором. Но только у второго поколения Pentium III для Socket 370 кэш-память перешла на кристалл процессора. Так продолжается и по сей день, но есть процессоры с небольшим количеством кэша, а есть с большим. Стоит ли тратить деньги на модель с большим кэшем? В прошлом дополнительная кэш-память не всегда ощутимо влияла на производительность.

Хотя всегда можно найти измеряемые различия между двумя процессорами с разными размерами кэша, для экономии средств вполне можно было покупать процессоры с меньшим кэшем. Но ни один процессор до появления Core 2 Duo не был доступен с тремя разными вариантами кэша.

Pentium 4 в своём первом поколении (Willamette, 180 нм) оснащался 256 кбайт кэша, а в более успешном втором поколении (Northwood, 130 нм) - уже 512 кбайт кэша. В то время дешёвые процессоры Celeron с меньшим кэшем производились на тех же вычислительных ядрах. Celeron относятся к первому поколению продуктов с одной технологической базой для high-end и дешёвых моделей, различающихся только доступным размером кэша и частотами FSB/ядра. Позднее была добавлена и разница в функциях, чтобы заметнее разделить сегменты рынка.

С выпуском 90-нм ядра Prescott объём кэша L2 вырос до 1 Мбайт, и этот процессор стал основой линейки настольных процессоров Intel до появления 2-Мбайт 65-нм Cedar Mill. Intel даже использовала два таких ядра для создания процессоров Pentium D 900 второго поколения. Впрочем, более быстрые тактовые частоты и больший объём кэша даже тогда не значили очень много. Сегодня ситуация изменилась: лучшая производительность Core 2 Duo (Conroe, 65 нм) и меньшее энергопотребление немало обязаны размеру кэша.

AMD весьма сдержанно относилась к увеличению объёма кэша. Скорее всего, это связано с площадью кристалла (бюджетом транзисторов), поскольку количество 65-нм процессоров не может удовлетворить спрос на рынке, а у менее выгодных 90-нм моделей этот вопрос стоит ещё острее. У Intel, с другой стороны, есть преимущество в виде производства всех массовых процессоров по 65-нм техпроцессу, да и ёмкость кэша L2 будет ещё расти. Например, следующее поколение Core 2 на 45-нм ядре Penryn будет оснащаться до 6 Мбайт кэша L2. Можно ли рассматривать это как маркетинговый шаг, или увеличение ёмкости L2 действительно даст прирост производительности? Давайте посмотрим.

Большой кэш L2: маркетинг или рост производительности?

Кэши процессора играют вполне определённую роль: они уменьшают количество обращений к памяти, буферизуя часто используемые данные. Сегодня ёмкость ОЗУ составляет от 512 Мбайт до 4 Гбайт, а объём кэша - от 256 кбайт до 8 Мбайт, в зависимости от модели. Впрочем, даже небольшого объёма кэша в 256 или 512 кбайт достаточно, чтобы обеспечить высокую производительность, которую сегодня воспринимают само собой разумеющейся.

Есть разные способы организации иерархии кэша. В большинстве современных компьютеров установлены процессоры с небольшим кэшем первого уровня (L1, до 128 кбайт), который обычно разделяется на кэш данных и кэш инструкций. Кэш L2 большего размера обычно используется для хранения данных, он является общим для двух процессорных ядер Core 2 Duo, хотя Athlon 64 X2 или Pentium D имеют раздельные кэши на ядро. Кэш L2 может работать эксклюзивно или инклюзивно, то есть он может либо хранить копию содержимого кэша L1, либо нет. AMD вскоре представит процессоры с третьим уровнем кэша, который будет общим для четырёх ядер в процессорах AMD Phenom. То же самое ожидается и для архитектуры Nehalem, которую Intel представит в 2008 году на замену текущим Core 2.

Кэш L1 всегда был в составе процессора, но поначалу кэш L2 устанавливался на материнские платы, как было в случае многих компьютеров 486DX и Pentium. Для кэш-памяти первого уровня использовались простые чипы статической памяти (SRAM, Static RAM). Они вскоре были заменены конвейерным пакетным кэшем (pipelined burst cache) у процессоров Pentium, пока не появилась возможность устанавливать кэш на кристалл. Pentium Pro на 150 - 200 МГц стал первым процессором, содержащим 256 кбайт кэш-памяти L2 на кристалле, побив рекорд по размеру керамической упаковки для настольных ПК и рабочих станций. Pentium III для Socket 370, работающий на частотах от 500 МГц до 1,13 ГГц, стал первым процессором с 256 кбайт кэш-памяти на кристалле L2, что давало преимущество по снижению задержек, поскольку кэш работает на частоте CPU.

Встроенный кэш L2 дал существенный прирост производительности практически в любых приложениях. Увеличение производительности оказалось столь существенным, что появление интегрированного кэша L2 можно назвать самым важным фактором производительности у процессоров x86. Отключение кэша L2 снизит производительность сильнее, чем отключение второго ядра у двуядерного процессора.

Однако кэш-память влияет не только на производительность. Она стала мощным инструментом, позволяющим создавать разные модели процессоров для low-end, массового и high-end сегментов, поскольку производитель может гибко отбирать процессоры по отбраковке и тактовым частотам. Если на кристалле нет дефектов, то можно включить весь кэш L2, да и частоты получаются высокие. Если же желаемых тактовых частот достичь не удастся, то кристалл может стать моделью начального уровня в high-end линейке, например, Core 2 Duo 6000 с 4 Мбайт кэша и низкими частотами. Если дефекты присутствуют в кэше L2, то производитель имеет возможность отключить его часть и создать модель начального уровня с меньшим объёмом кэша, например, Core 2 Duo E4000 с 2 Мбайт кэша L2 или даже Pentium Dual Core всего с 1 Мбайт кэша. Всё это действительно так, но вопрос заключается в следующем: насколько различие в объёме кэша влияет на производительность?

Варианты Core 2 Duo

Intel выпустила на рынок большой ассортимент настольных процессоров. Сегодня ещё можно найти Pentium 4 и Pentium D, но большинство моделей построено на микро-архитектуре Core. Мы не рекомендуем брать процессоры Pentium 4 или Pentium D, хотя их тактовые частоты до 3,8 ГГц могут выглядеть привлекательно. Но любой процессор Core 2 на частоте 2,2 ГГц и выше способен победить даже самые быстрые модели Pentium D (собственно, как и Athlon 64 X2), поскольку Core 2 даёт намного лучшую производительность на такт .

Благодаря меньшим тактовым частотам процессоры Core 2 более эффективны по энергопотреблению. Если топовые модели Pentium D 800 "съедают" до 130 Вт, то лишь Core 2 Extreme с четырьмя ядрами преодолевает порог 100 Вт. Все двуядерные процессоры потребляют не больше 65 Вт. Кроме того, энергопотребление в режиме бездействия процессоров Core 2 Duo ещё ниже, поскольку рабочая частота в режиме бездействия меньше (максимум 1,2 ГГц для Core 2 Duo/Quad против 2,8 ГГц для Pentium D/4). На снижение энергопотребления повлиял улучшенный дизайн транзисторов с уменьшенными токами утечки.

Сегодня доступны модели E и X. Модели E предназначены для массового рынка, а X относятся к классу Extreme Edition. Q обозначает четыре ядра, которые Intel создаёт, размещая два двуядерных кристалла в одной физической упаковке. Процессоры E6000 оснащены 4 Мбайт кэша L2, если их модельный номер выше E6400 или заканчивается на 20 (например, E6320). Модели, заканчивающиеся на 00 (например, E6600) работают с FSB 266 МГц (FSB1066), а модели, заканчивающиеся на 50 (E6750), работают с FSB 333 МГц (FSB1333). Последняя требует чипсета P35 или X38 и даёт чуть более высокую производительность. E4000 работает с FSB 200 МГц (FSB800) и имеет всего 2 Мбайт кэша L2. Версии с 1 Мбайт кэша продаются как Pentium Dual Core E2140, E2160 и E2180 с частотами от 1,6 до 2,0 ГГц. Кроме названия и некоторых функций, которые Intel отключает у дешёвых процессоров, упомянутые модели Pentium Dual Cores идентичны Core 2 Duo.

Характеристики процессоровCore 2 Duo
Номер 65-нм процессора Кэш Тактовая частота FSB Технология виртуализации Технология Trusted Execution
E6850 4 Мбайт L2 3 ГГц 333 МГц X X
E6750 4 Мбайт L2 2,66 ГГц 333 МГц X X
E6700 4 Мбайт L2 2,66 ГГц 266 МГц X
E6600 4 Мбайт L2 2,40 ГГц 266 МГц X
E6550 4 Мбайт L2 2,33 ГГц 333 МГц X X
E6540 4 Мбайт L2 2,33 ГГц 333 МГц X
E6420 4 Мбайт L2 2,13 ГГц 266 МГц X
E6400 2 Мбайт L2 2,13 ГГц 266 МГц X
E6320 4 Мбайт L2 1,86 ГГц 266 МГц X
E6300 2 Мбайт L2 1,86 ГГц 266 МГц X
E4600 2 Мбайт L2 2,40 ГГц 200 МГц
E4500 2 Мбайт L2 2,20 ГГц 200 МГц
E4400 2 Мбайт L2 2 ГГц 200 МГц
E4300 2 Мбайт L2 1,80 ГГц 200 МГц


Платформа
CPU I Intel Pentium Dual Core E2160 (65 нм; 1 800 МГц, 1 Мбайт кэша L2) на частоте 2,4 ГГц (266 МГц x9)
CPU II Intel Core 2 Duo E4400 (65 нм; 2 000 МГц, 2 Мбайт кэша L2) на частоте 2,4 ГГц (266 МГц x9)
CPU III Intel Core 2 Duo X6800 (65 нм; 3 000 МГц, 4 Мбайт кэша L2) на частоте 2,4 ГГц (266 МГц x9)
Материнская плата ASUS Blitz Formula, Rev: 1.0
Чипсет: Intel P35, BIOS 1101
Память Corsair CM2X1024-888C4D, 2x 1024 Мбайт DDR2-800 (CL 4-4-4-12 2T)
Жёсткий диск Western Digital Raptor WD1500ADFD, 150 Гбайт, 10 000 об/мин, кэш 16 Мбайт, SATA/150
DVD-ROM Samsung SH-S183
Видеокарта Zotac GeForce 8800 GTS, GPU: GeForce 8800 GTS (500 МГц), память: 320 Мбайт GDDR3 (1 600 Мгц)
Звуковая карта Встроенная
Блок питания Enermax EG565P-VE, ATX 2.01, 510 Вт
Системное ПО и драйверы
ОС Windows XP Professional 5.10.2600, Service Pack 2
Версия DirectX 9.0c (4.09.0000.0904)
Драйверы платформы Intel Version 8.3.1013
Графический драйвер nVidia Forceware 162.18

Тесты и настройки

3D-игры
Call Of Duty 2 Version: 1.3 Retail
Video Mode: 1280x960
Anti Aliasing: off
Graphics Card: medium
Timedemo demo2
Prey Version: 1.3
Video Mode: 1280x1024
Video Quality: game default
Vsync = off
Benchmark: THG-Demo
Quake 4 Version: 1.2 (Dual-Core Patch)
Video Mode: 1280x1024
Video Quality: high
THG Timedemo waste.map
timedemo demo8.demo 1 (1 = load textures)
Аудио
Lame MP3 Version 3.98 Beta 5
Audio CD "Terminator II SE", 53 min
wave to mp3
160 kbps
Видео
TMPEG 3.0 Express Version: 3.0.4.24 (no Audio)
fist 5 Minutes DVD Terminator 2 SE (704x576) 16:9
Multithreading by rendering
DivX 6.7 Version: 6.6 (4 Logical CPUs)
Profile: High Definition Profile
1-pass, 3000 kbit/s
Encoding mode: Insane Quality
Enhanced multithreading
no Audio
XviD 1.1.3 Version: 1.1.3
Target quantizer: 1.00
Mainconcept H.264 v2 Version 2.1
260 MB MPEG-2 source (1920x1080) 16:9
Codec: H.264
Mode: NTSC
Audio: AAC
Profile: High
Stream: Program
Приложения
WinRAR Version 3.70
(303 MB, 47 Files, 2 Folders)
Compression = Best
Dictionary = 4096 kB
Autodesk 3D Studio Max Version: 8.0
Characters "Dragon_Charater_rig"
rendering HTDV 1920x1080
Cinebench Version: R10
1 CPU, x CPU run
PCMark05 Pro Version: 1.2.0
CPU and Memory Tests
Windows Media Player 10.00.00.3646
Windows Media Encoder 9.00.00.2980




Заключение

Если объём кэш-памяти ограниченно влияет на такие синтетические тесты, как PCMark05, то разница в производительности большинства реальных приложений оказалась весьма существенной. Поначалу это кажется удивительным, поскольку опыт говорит, что именно синтетические тесты дают самую ощутимую разницу в производительности, которая мало отражается на реальных приложениях.

Ответ прост: размер кэша очень важен для современных процессоров с микро-архитектурой Core 2 Duo. Мы использовали 4-Мбайт Core 2 Extreme X6800, 2-Мбайт Core 2 Duo E4400 и Pentium Dual Core E2160, который является процессором Core 2 Duo с кэшем L2 всего 1 Мбайт. Все процессоры работали на одинаковой системной шине 266 МГц и с множителем 9x, чтобы частота составила 2 400 МГц. Единственная разница заключается в размере кэша, поскольку все современные двуядерные процессоры, за исключением старого Pentium D, производятся из одинаковых кристаллов. Чем станет ядро, Core 2 Extreme Edition или Pentium Dual Core, определяется выходом годных кристаллов (дефектами) или спросом рынка.

Если вы сравните результаты 3D-шутеров Prey и Quake 4, являющих типичными игровыми приложениями, разница в производительности между 1 и 4 Мбайт составляет примерно один шаг по частоте. То же самое касается тестов кодирования видео для кодеков DivX 6.6 и XviD 1.1.2, а также архиватора WinRAR 3.7. Однако, такие интенсивно нагружающие CPU приложения, как 3DStudio Max 8, Lame MP3 Encoder или H.264 Encoder V2 от MainConcept не слишком сильно выигрывают от увеличения размера кэша.

Впрочем, подход Intel, а именно, использование всего доступного бюджета транзисторов, который увеличился при переходе с 65-нм техпроцесса на 45-нм, имеет для микро-архитектуры Core 2 Duo определённую значимость. Кэш L2 у этих процессоров работает очень эффективно, особенно, если учесть, что он общий для двух ядер. Поэтому кэш нивелирует влияние разных частот памяти и предотвращает "узкое место" в виде FSB. И делает он это замечательно, поскольку тесты наглядно показывают, что производительность процессора с одним мегабайтом кэш-памяти невысокая.

С этой точки зрения увеличение размера кэша L2 с 4 Мбайт до, максимум, 6 Мбайт у грядущих 45-нм двуядерных процессоров Penryn (линейка Core 2 Duo E8000) имеет смысл. Уменьшение техпроцесса с 65 до 45 нм позволяет Intel увеличить бюджет транзисторов, и благодаря увеличению объёма кэша мы вновь получим рост производительности. Впрочем, Intel получит выгоду из-за разных вариантов процессоров с 6, 4, 2 или даже 1 Мбайт кэша L2. Благодаря нескольким вариантам Intel может использовать большее число кристаллов с пластины, несмотря на наличие случайных дефектов, которые в противном случае приводили бы к попаданию кристалла в мусорную корзину. Большой размер кэша, как видим, важен не только для производительности, но и для прибыли Intel.

Чипы на большинстве современных настольных компьютеров имеют четыре ядра, но производители микросхем уже объявили о планах перехода на шесть ядер, а для высокопроизводительных серверов и сегодня 16-ядерные процессоры далеко не редкость.

Чем больше ядер, тем больше проблема распределения памяти между всеми ядрами при одновременной совместной работе. С увеличением числа ядер всё больше выгодно минимизировать потери времени на управлении ядрами при обработке данных - ибо скорость обмена данными отстает от скорости работы процессора и обработки данных в памяти. Можно физически обратиться к чужому быстрому кэшу, а можно к своему медленному, но сэкономить на времени передаче данных. Задача усложняется тем, что запрашиваемые программами объемы памяти не четко соответствуют объемам кэш-памяти каждого типа.

Физически разместить максимально близко к процессору можно только очень ограниченный объем памяти - кэш процесcора уровня L1, объем которого крайне незначителен. Даниэль Санчес (Daniel Sanchez), По-Ан Цай (Po-An Tsai) и Натан Бэкмен (Nathan Beckmann) - исследователи из лаборатории компьютерных наук и искусственного интеллекта Массачусетского технологического института - научили компьютер конфигурировать разные виды своей памяти под гибко формируемую иерархию программ в реальном режиме времени. Новая система, названная Jenga, анализирует объемные потребности и частоту обращения программ к памяти и перераспределяет мощности каждого из 3 видов процессорного кэша в комбинациях обеспечивающих рост эффективности и экономии энергии.


Для начала исследователи протестировали рост производительности при комбинации статичной и динамической памяти в работе над программами для одноядерного процессора и получили первичную иерархию - когда какую комбинацию лучше применять. Из 2 видов памяти или из одного. Оценивались два параметра -задержка сигнала (латентность) и потребляемая энергия при работе каждой из программ. Примерно 40% программ стали работать хуже при комбинации видов памяти, остальные - лучше. Зафиксировав какие программы «любят» смешанное быстродействие, а какие - размер памяти, исследователи построили свою систему Jenga.

Они виртуально протестировали 4 виды программ на виртуальном компьютере с 36 ядрами. Тестировали программы:

  • omnet - Objective Modular Network Testbed, библиотека моделирования C и платформа сетевых средств моделирования (синий цвет на рисунке)
  • mcf - Meta Content Framework (красный цвет)
  • astar - ПО для отображения виртуальной реальности (зеленый цвет)
  • bzip2 - архиватор (фиолетовый цвет)


На картинке показано где и как обрабатывали данные каждой из программ. Буквы показывают, где выполняется каждое приложение (по одному на квадрант), цвета показывают, где находятся его данные, а штриховка указывает на второй уровень виртуальной иерархии, когда он присутствует.

Уровни кэша

Кэш центрального процессора разделён на несколько уровней. Для универсальных процессоров - до 3. Самой быстрой памятью является кэш первого уровня - L1-cache, поскольку расположена на одном с процессором кристалле. Состоит из кэша команд и кэша данных. Некоторые процессоры без L1 кэша не могут функционировать. L1 кэш работает на частоте процессора, и обращение к нему может производиться каждый такт. Зачастую является возможным выполнять несколько операций чтения/записи одновременно. Объём обычно невелик - не более 128 Кбайт.

С кэшем L1 взаимодействует кэш второго уровня - L2. Он является вторым по быстродействию. Обычно он расположен либо на кристалле, как и L1, либо в непосредственной близости от ядра, например, в процессорном картридже. В старых процессорах - набор микросхем на системной плате. Объём L2 кэша от 128 Кбайт до 12 Мбайт. В современных многоядерных процессорах кэш второго уровня, находясь на том же кристалле, является памятью раздельного пользования - при общем объёме кэша в 8 Мбайт на каждое ядро приходится по 2 Мбайта. Обычно латентность L2 кэша, расположенного на кристалле ядра, составляет от 8 до 20 тактов ядра. В задачах, связанных с многочисленными обращениями к ограниченной области памяти, например, СУБД, его полноценное использование дает рост производительность в десятки раз.

Кэш L3 обычно еще больше по размеру, хотя и несколько медленнее, чем L2 (за счет того, что шина между L2 и L3 более узкая, чем шина между L1 и L2). L3 обычно расположен отдельно от ядра ЦП, но может быть большим - более 32 Мбайт. L3 кэш медленнее предыдущих кэшей, но всё равно быстрее, чем оперативная память. В многопроцессорных системах находится в общем пользовании. Применение кэша третьего уровня оправдано в очень узком круге задач и может не только не дать увеличения производительности, но наоборот и привести к общему снижению производительности системы.

Отключение кэша второго и третьего уровней наиболее полезно в математических задачах, когда объём данных меньше размера кэша. В этом случае, можно загрузить все данные сразу в кэш L1, а затем производить их обработку.


Периодически Jenga на уровне ОС реконфигурирует виртуальные иерархии для минимизации объемов обмена данных, учитывая ограниченность ресурсов и поведение приложений. Каждая реконфигурация состоит из четырех шагов.

Jenga распределяет данные не только в зависимости от того, какие программы диспетчеризируются - любящие большую односкоростную память или любящие быстродействие смешанных кэшей, но и в зависимости от физической близости ячеек памяти к обрабатываемым данным. Независимо от того - какой вид кэша требует программа по умолчанию или по иерархии. Главное чтобы минимизировать задержку сигнала и энергозатраты. В зависимости от того, сколько видов памяти «любит» программа, Jenga моделирует латентность каждой виртуальной иерархии с одним или двумя уровнями. Двухуровневые иерархии образуют поверхность, одноуровневые иерархии - кривую. Затем Jenga проектирует минимальную задержку в размерах VL1, что дает две кривые. Наконец, Jenga использует эти кривые для выбора лучшей иерархии (то есть размера VL1).

Применение Jenga дало ощутимый эффект. Виртуальный 36-ядерный чип стал работать на 30 процентов быстрее и использовал на 85 процентов меньше энергии. Конечно, пока Jenga - просто симуляция работающего компьютера и пройдет некоторое время, прежде чем вы увидите реальные примеры этого кеша и еще до того, как производители микросхем примут его, если понравится технология.

Конфигурация условной 36 ядерной машины

  • Процессоры . 36 ядер, x86-64 ISA, 2.4 GHz, Silvermont-like OOO: 8B-wide
    ifetch; 2-level bpred with 512×10-bit BHSRs + 1024×2-bit PHT, 2-way decode/issue/rename/commit, 32-entry IQ and ROB, 10-entry LQ, 16-entry SQ; 371 pJ/instruction, 163 mW/core static power
  • Кэши уровня L1 . 32 KB, 8-way set-associative, split data and instruction caches,
    3-cycle latency; 15/33 pJ per hit/miss
  • Служба предварительной выборки Prefetchers . 16-entry stream prefetchers modeled after and validated against
    Nehalem
  • Кэши уровня L2 . 128 KB private per-core, 8-way set-associative, inclusive, 6-cycle latency; 46/93 pJ per hit/miss
  • Когерентный режим (Coherence) . 16-way, 6-cycle latency directory banks for Jenga; in-cache L3 directories for others
  • Global NoC . 6×6 mesh, 128-bit flits and links, X-Y routing, 2-cycle pipelined routers, 1-cycle links; 63/71 pJ per router/link flit traversal, 12/4mW router/link static power
  • Блоки статической памяти SRAM . 18 MB, one 512 KB bank per tile, 4-way 52-candidate zcache, 9-cycle bank latency, Vantage partitioning; 240/500 pJ per hit/miss, 28 mW/bank static power
  • Многослойная динамическая память Stacked DRAM . 1152MB, one 128MB vault per 4 tiles, Alloy with MAP-I DDR3-3200 (1600MHz), 128-bit bus, 16 ranks, 8 banks/rank, 2 KB row buffer; 4.4/6.2 nJ per hit/miss, 88 mW/vault static power
  • Основная память . 4 DDR3-1600 channels, 64-bit bus, 2 ranks/channel, 8 banks/rank, 8 KB row buffer; 20 nJ/access, 4W static power
  • DRAM timings . tCAS=8, tRCD=8, tRTP=4, tRAS=24, tRP=8, tRRD=4, tWTR=4, tWR=8, tFAW=18 (все тайминги в tCK; stacked DRAM has half the tCK as main memory)