Основная функция молекул хлорофилла, расположенных в гранах хлоропластов. Свет в процессе фотосинтеза

Органическое вещество состоит на 45% из углерода. Поэтому вопрос об источнике питания организмов углеродом чрезвы­чайно важен. Все организмы делят на автотрофные и гетеротрофные. Автотрофные организмы характеризуются способностью в качестве источника углерода использовать его минеральные формы, то есть синтезировать орга­ническое вещество из неорганических соединений. Гетеротрофные организмы строят органическое вещество своего тела из уже имеющихся готовых органиче­ских соединений, то есть используют органические соединения как источник углерода. Для того, чтобы осуществить синтез органического вещества, необходима энергия. В зависимости от используемого соединения, а также от источников энергии, различают следующие основные типы питания углеродом и построения органических веществ.

Типы углеродного питания организмов

Тип питания

Источник углерода

Источник

водорода

Источник энергии

I. Гетеротрофный

Органическое вещество

Органическое вещество

Энергия окисления органических

ве­ществ

П. Автотрофный

1. Фотосинтез

Энергия света

2.Бактериальный фотосинтез

Н 2 S, Н 2 и др.

Энергия света

3. Хемосинтез

Н 2 О, Н 2 S, Н 2 ,

Энергия окисления неорганических ве­ществ

Из всех перечисленных типов питания углеродом фотосинтез зеленых расте­ний, при котором построение органических соединений идет за счет простых неорганических веществ (СО 2 и Н 2 О) с использованием энергии солнечного све­та, занимает совершенно особое место. Общее уравнение фотосинтеза:

6СО 2 + 12Н 2 О = С 6 Н 12 О 6 + 6О 2 + 6Н 2 О

Фотосинтез – это процесс, при котором энергия солнечного света превра­щается в химическую энергию. В самом общем виде это можно представить сле­дующим образом: квант света (hv) поглощается хлорофиллом, молекула которого переходит в возбужденное состояние, при этом электрон переходит на более вы­сокий энергетический уровень. В клетках фотоавтотрофов в процессе эволю­ции выработался механизм, при котором энергия электрона, возвращающегося на основной энергетический уровень, превращается в химическую энергию.

В процессе фотосинтеза из простых неорганических соединений (СО 2 , Н 2 О) строятся различные органические вещества. В результате происходит перестройка химических связей: вместо связей С–О и Н–О возникают связи С–С и С–Н, в которых электроны занимают более высокий энергетический уровень. Таким обра­зом, богатые энергией органические вещества, которыми питаются и за счет кото­рых получают энергию (в процессе дыхания) животные и человек, первоначально создаются в зеленом листе. Можно сказать, что практически вся живая материя на Земле является результатом фотосинтетической деятельности.

Почти весь кислород атмосферы фотосинтетического происхождения. Процессы дыхания и горения стали воз­можны только после того, как возник фотосинтез. Возникли аэробные организмы, способные усваивать кислород. На поверхности Земли про­цессы приняли биогеохимический характер, произошло окисление соединений железа, серы, марганца. Изменился состав атмосферы: содержание СО 2 и аммиака снизилось, а кислорода и азота возросло. Возникновение озонового эк­рана, который задерживает опасную для живых организмов ультрафиолетовую радиацию, также является следствием появления кислорода.

Для того, чтобы процесс фотосинтеза протекал нормально, к хлоропластам должен поступать СО 2 . Основным поставщиком служит атмосфера, где количество СО 2 составляет 0,03%. Для образования 1 г сахара необходимо 1,47 г СО 2 – такое количество содержится в 2500 л воздуха.

Углекислый газ поступает в лист растения через устьица. Некоторое количество СО 2 поступает непосредственно через кутикулу. При закрытых устьицах диффузия СО 2 в лист резко сокращается.

Наиболее примитивная организация фотосинтетиче­ского аппарата у зеленых бактерий и цианобактерий. У этих организмов функцию фотосинтеза выполняют внутрицитоплазматические мембраны или особые структуры – хлоросомы, фикобилисомы. У водорослей уже эволюционно возникли органеллы (хроматофоры), в которых сосредоточены пигменты, они разнообразны по форме (спиральные, лентовидные, пластинчатые, звездчатые). Высшие растения харак­теризуются вполне сформировавшимся типом пластид в форме диска или двоя­ковыпуклой линзы. Приняв форму диска, хлоропласты становятся универсаль­ным аппаратом фотосинтеза. Фотосинтез протекает в зеленых пластидах – хлоропластах. В лейкопластах синтезируется и отлагается в запасной крахмал, в хромопластах накапливаются каротиноиды.

Размер дисковидных хлоропластов высших растений колеблется от 4 до 10 мкм. Число хлоропластов обычно составляет от 20 до 100 на клетку. Химический состав хлоропластов достаточно сложен и может быть охарактеризован следующими средними данными (% на сухую массу): белок – 35-55; липиды – 20-30; углеводы – 10; РНК – 2-3; ДНК – до 0,5; хлорофилл – 9; каротиноиды – 4,5.

В хлоропластах сосредоточены ферменты, при­нимающие участие в процессе фотосинтеза (окислительно-восстановительные, синтетазы, гидролазы). В хлоропластах, так же как и в митохондриях, имеется своя белоксинтезирующая система. Многие из ферментов, локализованных в хлоропластах, являются двухкомпонентными. Во многих случаях простетическая группа ферментов – это различные витамины. В хлоропластах сосредоточены многие витамины и их производные (витамины группы В, К, Е, D). В хлоропластах находится 80% Fe, 70% Zn, около 50% Сu от всего количества этих элементов в листе.

Хлоропласты окружены двойной мембраной. Толщина каждой мембраны 7,5-10 нм, расстояние между ними 10-30 нм. Внутреннее пространство хлоропластов заполнено бесцветным содержимым – стромой и пронизано мембранами. Мембраны, соединенные друг с другом, образуют плоские замкнутые полости (пузырьки) – тилакоиды (греч. «тилакоидес» – мешковидный). В хлоропластах содержатся тилакоиды двух типов. Короткие тилакоиды собраны в пачки и расположены друг над другом, напоминая стопку монет. Эти стопки называются гранами, а составляющие их тилакоиды – тилакоидами гран. Между гранами параллельно друг другу располагаются длин­ные тилакоиды – тилакоиды стромы. Между отдельными тилакоидами в стопках гран имеются узкие щели. Тилакоидные мембраны содержат большое количество белков, участвующих в фотосинтезе. В составе интегральных мембранных белков имеется много гидрофобных аминокислот. Это создает безводную среду и делает мембраны стабильнее.

Для того, чтобы световая энергия могла быть использована в процессе фотосинтеза, необходимо ее погло­щение фоторецепторами – пигментами. Фотосинтетические пигменты – это вещества, которые поглощают свет определенной длины волны. Не поглощенные участки солнечного спектра отражаются, что и обусловливает окраску пигментов. Так, зеленый пигмент хлорофилл поглощает красные и синие лучи, тогда как зеле­ные лучи, в основном, отражаются. Видимая часть солнечного спектра включает длины волн от 400 до 700 нм.

Состав пигментов зависит от систематического положения группы организмов. У фотосинтезирующих бактерий и водорослей пигментный состав разнообразен (хлорофиллы, бактериохлорофиллы, бактерио­родопсин, каротиноиды, фикобилины). Их набор и соотношение специфичны для различных групп организмов. Пигменты, сконцен­трированные в пластидах, можно разделить на три группы: хлорофиллы, каротиноиды, фикобилины.

Важнейшую роль в процессе фотосинтеза играют зеленые пигменты –хлорофиллы. Французские ученые П.Ж. Пелетье и Ж. Кавенту (1818) выделили из листьев зеленое вещество и назвали его хлорофиллом (от греч. «хлорос» – зеленый и «филлон» – лист). В настоящее время известно около десяти хлорофиллов. Они отличаются по химическому строению, окраске, распространению среди групп организмов. У всех высших растений содержатся хлорофиллы a и b. Хлоро­филл c обнаружен в диатомовых водорослях, хлорофилл d – в красных водорос­лях. Кроме того, известны бактериохлорофиллы (а, b, c, d), содержащиеся в клетках фотосинтезирующих бактерий. В клетках зеленых бактерий имеются бактериохлорофиллы с и d, в клетках пурпурных бактерий – бактериохлорофиллы a и b. Основными пигментами, без которых фотосинтез не идет, являют­ся хлорофилл a для зеленых высших растений и водорослей, и бактериохлорофиллы – для бактерий.

Впервые точное представление о пигментах зеленого листа высших растений было получено благодаря работам крупнейшего российского ботаника М.С. Цвета (1872-1919). Он разработал новый хроматографический метод разделения ве­ществ и выделил пигменты листа в чистом виде. Оказалось, что листья высших растений содер­жат хлорофилл a и хлорофилл b, а также каротиноиды (каротин, ксантофилл). Хлорофиллы, так же, как и каротиноиды, нерастворимы в воде, но хоро­шо растворимы в органических растворителях. Хлорофиллы a и b различаются по цвету: хлорофилл a имеет сине-зеленый оттенок, хлорофилл b – желто-зеленый. Содержание хлорофилла a в листе примерно в 3 раза больше по срав­нению с хлорофиллом b. По химическому строению хлорофиллы – сложные эфиры дикарбоновой ор­ганической кислоты – хлорофиллина и двух остатков спиртов – фитола (С 20 Н 39 ОН) и метилового (СН 3 ОН). Эмпирическая формула хлорофилла С 55 Н 72 О 5 N 4 Мg (рис. 5.1 ).

Органическая дикарбоновая кислота хлорофиллин представ­ляет собой азотсодержащее металлорганическое соединение, относящееся к магнийпорфиринам: (СООН) 2 = С 32 Н 30 ОN 4 Мg.

В хлорофилле водород карбоксильных групп замещен остатками двух спир­тов – метилового СН 3 ОН и фитола С 20 Н 39 ОН, поэтому хлорофилл является слож­ным эфиром.

Рис. 5.1. Структурная формула хлорофилла а.

Хлоро­филл b отличается тем, что содержит на два атома водорода меньше и на один атом кислорода больше (вместо группы СН 3 группа СНО). В связи с этим, молекулярная масса хлорофилла a – 893 и хлорофилла b – 907.

В центре молекулы хлорофилла расположен атом магния, который соединен с четырьмя атомами азота пиррольных группировок. В пиррольных группиров­ках хлорофилла имеется система чередующихся двойных и простых связей. Это хромофорная группа хлорофилла, обусловливающая поглощение опреде­ленных лучей солнечного спектра и его окраску.

Еще К.А. Тимирязев обратил внимание на близость хи­мического строения двух важнейших пигментов: зеленого – хлорофилла листьев и красного – гемина крови. Действительно, если хлорофилл относится к магнийпорфиринам, то гемин – к железопорфиринам. Сходство это служит еще одним доказательством единства всего органического мира.

Молекула хлорофилла полярна, ее порфириновое ядро обладает гидрофиль­ными свойствами, а фитольный конец – гидрофобными. Это свойство молеку­лы хлорофилла обусловливает определенное расположение ее в мембранах хлоропластов. Порфириновая часть молекулы связана с белком, а фитольная цепь погружена в липидный слой.

Хлорофилл способен к избирательному поглощению света. Спектр поглощения определяется его способностью погло­щать свет определенной длины волны (определенного цвета). Для того чтобы получить спектр поглощения, К.А. Тимирязев пропускал луч света через рас­твор хлорофилла. Было по­казано, что хлорофилл в той же концентрации, как в листе, имеет две основные линии поглощения в красных и сине-фиолетовых лучах. При этом хло­рофилл a в растворе имеет максимум поглощения 429 и 660 нм, тогда как хло­рофилл b – при 453 и 642 нм (рис. 5.2).

Рис. 5.2. Спектры поглощения хлорофилла а и хлорофилла b

Наряду с зелеными пигментами в хлоропластах и хроматофорах содержатся пиг­менты, относящиеся к группе каротиноидов. Каротиноиды – это желтые и оран­жевые пигменты алифатического строения, производные изопрена. Кароти­ноиды содержатся во всех высших растениях и у многих микроорганизмов. Это самые распространенные пигменты с разнообразными функциями. Кароти­ноиды, содержащие кислород, получили название ксантофиллы. Основными представителями каротиноидов у высших растений являются два пигмента – бета-каротин (оранжевый) С 40 Н 56 и ксантофилл (желтый) С 40 Н 56 О 2 . Каротин со­стоит из 8 изопреновых остатков. При разрыве углеродной цепочки пополам и образовании на конце спиртовой группы каротин превращается в 2 молекулы витамина А.

Бета-каротин имеет два максимума поглощения, соответствующие длинам волн 482 и 452 нм. В отличие от хлорофиллов каротиноиды не поглощают красные лучи, а также не обладают способностью к флуоресценции. Подобно хлорофиллу каротиноиды в хлоропластах и хроматофорах находятся в виде нерастворимых в воде комплек­сов с белками. Каротиноиды всегда присутствуют в хлоропластах, они принимают участие в процессе фотосинтеза. Поглощая световую энергию в определенных участках солнечного спектра, они пере­дают энергию этих лучей на молекулы хлорофилла. Тем самым, они способствуют использованию лучей, которые хлорофиллом не поглощаются. Физиологическая роль каротиноидов не ограничивается их участием в пе­редаче энергии на молекулы хлорофилла. Каротиноиды выполняют защитную функцию, предо­храняя молекулы хлорофил­ла от разрушения на свету в процессе фотоокисления (рис. 5.3).

Рис. 5.3. Структурная формула бета-каротина

Фикобилины – красные и синие пигменты, содержащиеся у цианобактерий и красных водорослей. В основе химическо­го строения фикобилинов лежат 4 пиррольные группировки. В отличие от хлорофилла у фикобилинов пиррольные группы расположены в виде открытой цепочки ( рис. 5.4).

Рис. 5.4. Структурная формула хромофорной группы фикоэритринов

Фикобилины представлены пигментами: фикоцианином, фикоэритрином и аллофикоцианином. Фикоэритрин – это окисленный фикоцианин. Красные водоросли, в основном, содержат фикоэритрин, а цианобактерии – фикоцианин. Фикобилины образуют прочные соединения с белками (фикобилинпротеиды). В отличие от хлорофиллов и каротиноидов, расположенных в мембранах, фикобилины концентрируются в особых гранулах (фикобилисомах), тесно связанных с мембранами тилакоидов. Фикобилины поглощают лучи в зеленой и желтой частях солнечного спек­тра. Это та часть спектра, которая находится между двумя основными линиями поглощения хлорофилла. Фикоэритрин поглощает лучи с длиной волны 495-565 нм, а фикоцианин – 550-615 нм. Сравнение спектров поглощения фи­кобилинов со спектральным составом света, в котором проходит фотосинтез у цианобактерий и красных водорослей, показывает, что они очень близки. Это позволяет считать, что фикобилины поглощают энергию света и, подобно каротиноидам, передают ее на молекулу хлорофилла, после чего она используется в процессе фотосинтеза. Наличие фикобилинов у водорослей является примером приспособления ор­ганизмов в процессе эволюции к использованию участков солнечного спектра, которые проникают сквозь толщу морской воды (хроматическая адаптация).

Фотосинтез – это сложный многоступенчатый окислительно-восстановитель­ный процесс, в котором происходит восстановление углекислого газа до углеводов и окисление воды до кислорода. В процессе фотосинтеза происходят не только реакции, идущие с использова­нием энергии света, но и темновые, не требующие непосредственного участия энергии света. Можно привести следующее доказательство существования темновых реакций в процессе фотосинтеза: фотосинтез ускоряется с повыше­нием температуры. Отсюда прямо следует, что какие-то этапы этого процесса непосредственно не связаны с использованием энергии света. Процесс фотосинтеза включает следующие этапы: 1) фотофизический; 2) фо­тохимический (световой); 3) ферментативный (темновой).

Согласно законам фотохимии, при поглощении кванта света атомом или мо­лекулой какого-либо вещества электрон переходит на другую, более удаленную орбиталь, то есть на более высокий энергетический уровень (рис. 5.5).

Рис. 5.5. Переходы между возбужденными состояниями хлорофилла после поглощения квантов синего и красного света

Наибольшей энергией обладает электрон, отдаленный от ядра атома и находящийся на достаточно большом расстоянии от него. Каждый электрон переходит на более высокий энер­гетический уровень под влиянием одного кванта света, если энергия этого кванта равна разнице между этими энергетическими уровнями. Все фотосинтезирующие организмы содержат какой-либо тип хлорофилла. В молекуле хлорофилла два уровня возбуждения. Именно с этим связано и то, что он имеет две основные линии поглощения. Первый уровень возбуждения обусловлен переходом на более высокий энергетический уровень электрона в системе сопряженных двойных связей, а второй – с возбуждением неспарен­ных электронов атомов азота и кислорода в порфириновом ядре. При поглоще­нии света электроны переходят в колебательное движение и перемещаются на следую­щие орбитали с более высоким энергетическим уровнем.

Наиболее высокий энергетический уровень – это второй синглетный уро­вень. Электрон переходит на него под влиянием сине-фиолетовых лучей, кванты которых содержат больше энергии.

В первое возбужденное состояние электроны могут переходить, поглощая более мелкие кванты красного света. Время жизни на втором уровне составляет 10 -12 с. Это время настолько мало, что на его протяжении энергия электронного возбуждения не может быть использо­вана. Через этот короткий промежуток времени электрон возвращается в первое синглетное состояние (без изменения направления спина). Переход из вто­рого синглетного состояния в первое сопровождается некоторой потерей энергии (100 кДж) в виде теплоты. Время жизни в первом синглетном состоянии немного больше (10 -9 или 10 -8 с). Наибольшим временем жизни (10 -2 с) обладает триплетное состояние. Переход на триплетный уровень происхо­дит с изменением спина электрона.

Из возбужденного, первого синглетного и триплетного состояния молекула хлорофилла также может переходить в основное. При этом ее дезактивация (потеря энергии) может проходить:

1) путем выделения энергии в виде света (флуоресценция и фосфоресценция) или в виде тепла;

2) путем переноса энергии на другую молекулу пигмента;

3) путем затрачивания энергии на фотохимические процессы (потеря электрона и присоединение его к акцептору).

В любом из указанных случаев молекула пигмента дезактивируется и переходит на основной энергетический уровень.

Хлорофилл имеет две функции – поглоще­ние и передачу энергии. При этом основная часть молекул хлорофилла – более 90% всего хлорофилла хлоропластов входит в состав светособирающего комплек­са (ССК). Светособирающий комплекс выполняет роль антенны, которая эф­фективно поглощает свет и переносит энергию возбуждения к реакционному центру. Кроме большого числа (до нескольких сотен) молекул хлорофилла ССК содержит каротиноиды, а у некоторых водорослей и цианобактерий – фикобилины, которые увеличивают эффективность усвоения света.

В процес­се эволюции в растениях выработался механизм, позволяющий наиболее полно использовать кванты света, падающие на лист подобно каплям дождя. Механизм этот заключается в том, что энергия квантов света улавливается 200-400 моле­кулами хлорофилла и каротиноидами ССК и передается одной молекуле – реакционному центру. Расчеты показали, что в одном хло­ропласте до 1 млрд молекул хлорофилла. Теневыносливые рас­тения имеют, как правило, больший размер ССК по сравнению с растениями, растущими в условиях высокой освещенности. В реакционных центрах в результате фотохимических реакций образуются первичные восстановитель и окислитель. Они затем вызывают цепь последовательных окислительно-восста­новительных реакций. В итоге энергия запасается в виде восстановленного никотинамидаденин­динуклеотидфосфата (НАДФ Н+) и аденозинтри­фосфата (АТФ), который синтезируется из аденозиндифосфата (АДФ) и неорганической фосфорной кислоты за счет реакции фо­тосинтетического фосфорилирования. Следовательно, НАДФ Н+ и АТФ – основные продукты световой фазы фото­синтеза. Таким образом, в первичных процессах фотосинтеза, связанных с поглоще­нием молекулой хлорофилла кванта света, важную роль играют процессы пере­дачи энергии. Фотофизический этап фотосинтеза заключается в том, что кванты света поглощаются и переводят молекулы пигментов в возбужденное состояние. Затем эта энергия переносится на реакционный центр, осуществ­ляющий первичные фотохимические реакции: разделение зарядов. Дальнейшее превращение энергии света в химическую энергию проходит ряд этапов, начиная с окислительно-восстановительных превращений хлорофилла и включая как фотохимические (световые), так и энзиматические (темновые) реакции.

То есть фотосинтез включает преобра­зование энергии (явление, получившее на­звание светового процесса) и превращение вещества (темновой процесс). Световой процесс происходит в тилакоидах, темновой – в строме хлоропластов. Два процесса фотосинтеза выражаются отдельными уравнениями:

12Н 2 О =12Н 2 + 6О 2 + энергия АТФ (световой процесс).

Из этого уравнения видно, что кислород, выделяемый при фотосинтезе, образуется при разложении молекул воды. Кроме того, световая энергия используется на синтез аденозинтрифосфорной кислоты (АТФ) в ходе фотофосфорилирования.

6СО 2 + 12Н 2 + энергия АТФ = С 6 Н 12 О 6 + Н 2 О (темновой процесс)

В темновых реакциях используются продукты, накопленные в световой фазе. Суть темновых реакций сводится к фик­сации СО 2 и включению его в молекулу сахара. Этот процесс получил название цикла Кальвина по имени американского биохимика, подробно изучившего после­довательность темновых реакций. Использование воды в качестве источника водорода для синтеза органических молекул дало растениям в процессе эволюции большое преимущество в силу повсеместного ее присутствия (вода является самым распространенным минералом на Земле).

Поскольку весь кислород фотосинтеза выделяется из воды, итоговое уравнение принимает вид:

6СО 2 + 12Н 2 О + hv = С 6 Н 12 О 6 + 6О 2 + 6Н 2 О

Вода в правой части уравнения не подлежит сокращению, так как ее кислород имеет иное происхождение (из СО 2). Следовательно, фотосинтез – это окислительно-восстановительный процесс, в котором вода окисляется до молекуляргого кислорода (О 2) , а углекислый газ восстанавливается водородом воды до углеводов.

По завершении каждого цикла образуется конечный продукт: одна молекула сахара, который ложится в основу первичного органического вещества, образующегося при фотосинтезе.

Организмы, живущие за счет неорганического источника углерода (двуокиси углерода), называют автотрофными (автотрофами) (греч. autos - сам), а организмы, использующие органический источник углерода, - гетеротрофными (гетеротрофами) (греч. heteros - другой). В отличие от гетеротрофов автотрофы удовлетворяют все свои потребности в органических веществах, синтезируя их из простых неорганических соединений.

В табл. 9.1 представлены обе эти классификации - по источнику энергии и по источнику углерода. Хорошо видны их взаимоотношения. Кроме того, выявляется еще один очень важный принцип, а именно то, что хемотрофные организмы целиком зависят от фототрофных, которые поставляют им энергию, а гетеротрофные организмы полностью зависят от автотрофов, снабжающих их соединениями углерода.

Таблица 9.1. Классификация живых организмов в соответствии с основным источником углерода и энергии *

* (Большинство организмов относится к фотоавтотрофам или хемогетеротрофам. )

Самые важные группы - фотоавтотрофы (к которым относятся все зеленые растения) и хемогетеротрофы (все животные и грибы). Если на время пренебречь некоторыми бактериями, положение еще более упростится, и можно будет сказать, что гетеротрофные организмы в конечном счете зависят от зеленых растений, доставляющих им энергию и углерод. Иногда фотоавтотрофные организмы называют голофитными (греч. holos - целый, полный, phyton - растение).

9.1. Дайте определение, что такое фотоавтотрофное питание и хемогетеротрофное питание.

Игнорируя пока две меньшие группы (см. табл. 9.1), мы должны, однако, сразу же отметить, что жизнедеятельность хемосинтезирующих организмов тоже имеет очень важное значение - это мы увидим в разд. 9.10 и 9.11.

Несколько организмов нельзя всецело отнести к какой-то одной из четырех групп. Так, например, Euglena обычно ведет себя как автотроф, но некоторые виды могут жить как гетеротрофы и в темноте, если имеется источник органического углерода. Взаимоотношения между двумя главными категориями еще лучше представлены на рис. 9.1; здесь показано также, каким образом потоки энергии и углерода включаются в общий круговорот между живыми организмами и средой. Эти вопросы имеют важное значение для экологии (гл. 12).

Углерод высвобождается в процессе дыхания в виде СО 2 , а СО 2 затем снова превращается в процессе фотосинтеза в органические соединения. Более подробно круговорот углерода представлен на рис. 9.2, где показана и та роль, которую играют в этом процессе хемосинтезирующие организмы.


Рис. 9.2. Круговорот углерода. Жирными стрелками показан преобладающий путь (из двух возможных). По некоторым приблизительным оценкам действительное количество углерода составляет: В океане: (в основном в составе фитопланктона): 40·10 12 кг углерода в год фиксируется в процессе фотосинтеза в виде СО 2 . Большая часть его затем высвобождается при дыхании. На суше: 35·10 12 кг углерода в год фиксируется при фотосинтезе в виде СО 2 ; 10·10 12 кг углерода в год выделяется при дыхании растений и животных; 25·10 12 кг углерода в год выделяется при дыхании редуцентов; 5·10 12 кг углерода в год высвобождается при сжигании ископаемого топлива; этого количества вполне достаточно для постепенного увеличения концентрации двуокиси углерода в атмосфере и в океанах

9.2. Рассмотрите рис. 9.2. Какие типы питания представлены здесь а) на сером фоне и б) на белом фоне?

Углекислый газ поступает в растения из воздуха, превращаясь с помощью лучистой энергии солнца в сложные, высокоэнергетические органические соединения, которыми питается животный мир. Животные, используя потенциальную энергию органических веществ, снова освобождают углекислый газ. Согласно современным представлениям, приведенное выше уравнение фотосинтеза можно изобразить в виде схемы:

Следовательно, фотосинтез состоит из двух сопряженных систем реакций: окисления воды до кислорода и восстановления углекислого газа водородом воды до полисахаридов.

Лист сверху и снизу покрыт бесцветной кожицей, малопроницаемой для газов кутикулой. Углекислый газ, который усваивается в процессе фотосинтеза, поступает в лист через устьица. На 1 см 2 поверхности листа на долю устьиц приходится лишь 1 мм 2 , остальная площадь - на непроницаемую кутикулу. Диффузия СО 2 в лист происходит очень интенсивно. Например, 1. см 2 листовой поверхности катальпы поглощает 0,07 см 3 СО 2 за 1 ч, а такая же поверхность раствора щелочи - 0,12-0,15 см 3 , или в 2 раза больше.

В процентах указаны траты поглощенной листом световой энергии на различные виды работ

Для процесса фотосинтеза имеют значение особенности строения листа. К верхней стороне листа прилегает палисадная ткань, клетки которой расположены перпендикулярно, плотно соприкасаются друг с другом и богаты хлоропластами. Палисадная паренхима является преимущественно ассимиляционной тканью. К нижнему эпидермису прилегает губчатая паренхима с рыхлорасположенными клетками и межклетниками. Это приспособление у растений имеет значение для лучшего проникновения газов в клетки (рис. 1).

Чтобы процесс фотосинтеза проходил непрерывно, клетки должны быть достаточно насыщены водой. В этих условиях устьица до определенной степени бывают открыты. При этом будут осуществляться транспирация, газообмен, листья будут снабжаться в достаточной мере углекислым газом, т.е. процесс фотосинтеза будет проходить нормально.

Лист пронизан проводящими пучками, которые обеспечивают отток из него продуктов ассимиляции, что очень важно для нормального течения процесса фотосинтеза, поскольку в клетках, переполненных продуктами ассимиляции, в частности крахмалом, фотосинтез угнетается и может совсем прекратиться.

Выращивание растений при искусственном освещении. Условия наилучшего использования электрического света.

Исследования показали, что на развитие растений в значительной мере влияет интенсивность и спектральный состав света. В связи с этим большой интерес представляют опыты В.И. Разумова, который доказал, что красный свет действует как естественное дневное освещение, а синий воспринимается растением как темнота. Если освещать растения короткого дня ночью красным светом, то они не зацветают; растения длинного дня в этих условиях зацветают раньше, чем в обычных. Освещение растений в ночное время синим светом не нарушает влияния темноты. Следовательно, длинноволновый свет воспринимается как дневной свет, а коротковолновый - как темнота. Таким образом, качественный состав света оказывает влияние на развитие растения.

Однако существует иной взгляд, а именно, что все световые лучи, если они достаточно интенсивны, воспринимаются растением как дневное освещение. Считают, что спектральный состав света в течение дня почти одинаковый. В значительной мере изменяется лишь его интенсивность - наименьшая утром и к вечеру и наибольшая в полдень.

Установлено, что свет люминесцентных ламп по спектральному составу сходен с солнечным светом, поэтому для выращивания растений при искусственном освещении используют именно эти лампы.

Светильники с люминесцентными лампами, преимущественно размещаются рядами, желательно параллельными стене с окнами или длинной стороне узкого помещения. Но в помещениях, предназначенных для растений, оптимальным является такое расположение светильников, при котором направление света приближается к направлению естественного света.

Необходимо помнить, что излишек света пагубно сказывается на растениях, процесс фотосинтеза приостанавливается, растения ослабевают и хуже переносят неблагоприятные условия. Наибольшую продолжительность светового дня переносит фасоль - до 12 часов.