О важности изучения митохондриальной днк. Исследование митохондриальных днк Митохондрии содержат днк гены которой

ДНК в митохондриях представлена циклическими молекулами, не образующими связь с гистонами, в этом отношении они напоминают бактериальные хромосомы.
У человека митохондриальная ДНК содержит 16,5 тыс. н.п., она полностью расшифрована. Найдено, что митохондральная ДНК различных объектов очень однородна, отличие их заключается лишь в величине интронов и нетранскрибируемых участков. Все митохондриальные ДНК представлены множественными копиями, собранными в группы, кластеры. Так в одной митохондрии печени крысы может содержаться от 1 до 50 циклических молекул ДНК. Общее же количество митохондриальной ДНК на клетку составляет около одного процента. Синтез митохондриальных ДНК не связан с синтезом ДНК в ядре. Так же как и у бактерий митохондральная ДНК собрана в отдельную зону – нуклеоид, его размер составляет около 0, 4 мкм в диаметре. В длинных митохондриях может быть от 1 до 10 нуклеоидов. При делении длинной митохондрии от нее отделяется участок, содержащий нуклеоид (сходство с бинарным делением бактерий). Количество ДНК в отдельных нуклеоидах митохондрий может колебаться в 10 раз в зависимости от типа клеток. При слиянии митохондрий может происходить обмен их внутренними компонентами.
рРНК и рибосомы митохондрий резко отличны от таковых в цитоплазме. Если в цитоплазме обнаруживаются 80s рибосомы, то рибосомы митохондрий растительных клеток принадлежат к 70s рибосомам (состоят из 30s и 50s субъединиц, содержат 16s и 23s РНК, характерные для прокариотических клеток), а в митохондриях клеток животных обнаружены более мелкие рибосомы (около 50s). В митоплазме на рибосомах идет синтез белков. Он прекращается, в отличие от синтеза на цитоплазматических рибосомах, при действии антибиотика хлорамфеникола, подавляющего синтез белка у бактерий.
На митохондриальном геноме синтезируются и транспортные РНК, всего синтезируется 22 тРНК. Триплетный код митохондриальной синтетической системы отличен от такового, используемого в гиалоплазме. Несмотря на наличие казалось бы всех компонентов, необходимых для синтеза белков, небольшие молекулы митохондриальной ДНК не могут кодировать все митохондриальные белки, только лишь их небольшую часть. Так ДНК размером 15 тыс.н.п. может кодировать белки с суммарным молекулярным весом около 6х105. В это же время суммарный молекулярный вес белков частицы полного дыхательного ансамбля митохондрии достигает величины около 2х106.

Рис. Относительные размеры митохондрий у различных организмов.

Интересны наблюдения за судьбой митохондрий в дрожжевых клетках. В аэробных условиях дрожжевые клетки имеют типичные митохондрии с четко выраженными кристами. При переносе клеток в анаэробные условия (например, при их пересеве или при перемещении в атмосферу азота) типичные митохондрии в их цитоплазме не обнаруживаются, и вместо них видны мелкие мембранные пузырьки. Оказалось, что в анаэробных условиях дрожжевые клетки не содержат полную дыхательную цепь (отсутствуют цитохромы b и a). При аэрации культуры наблюдается быстрая индукция биосинтеза дыхательных ферментов, резкое повышение потребления кислорода, а в цитоплазме появляются нормальные митохондрии.
Расселение людей на Земле

Магнитные поля - это физические и внешние силы, вызывающие множественные реакции в клеточной биологии, которые включают изменения в обмене информации в РНК и ДНК, а также многие генетические факторы. Когда происходят изменения в планетарном магнитном поле, изменяется уровень электромагнетизма (ЭДС), непосредственно изменяющий клеточные процессы, генетическое выражение и плазму крови. Функции белков в теле человека, так же, как и в плазме крови, связаны со свойствами и влиянием ЭДС поля. Белки выполняют разнообразные функции в живых организмах, в том числе выступая в роли катализаторов метаболических реакций, производя репликацию ДНК, вызывая реакцию на возбудители и перемещая молекулы с одного места в другое. Плазма крови действует как хранилище белка в организме, защищая от инфекций и болезней, и играет жизненно важную роль в обеспечении белками, необходимыми для синтеза ДНК. Качество нашей крови и плазмы крови - это то, что дает команды всей совокупности белков, выражаясь посредством нашего генетического материала во всех клетках и тканях. Это означает, что кровь непосредственно взаимодействует с телом посредством белков, что было закодировано в нашей ДНК. Эта связь синтеза белка между ДНК, РНК и митохондриями клеток меняется в результате изменения магнитного поля.

Кроме того, наши эритроциты содержат гемоглобин, который является белком на основе четырех атомов железа, связанных с состоянием железного ядра и магнетизмом Земли. Гемоглобин в крови несет кислород от легких к остальным частям тела, где кислород освобождается для сжигания питательных веществ. Это обеспечивает энергией работу нашего тела, в процессе, называемом энергетическим метаболизмом. Это важно, поскольку изменения в нашей крови непосредственно связаны с энергией в процессе обмена веществ в нашем теле и сознании. Это станет еще более очевидно, когда мы станем обращать внимание на эти знаки, изменяющие потребление энергии и использование энергетических ресурсов на планете. Вернуть их законному владельцу, также означает изменение энергетического метаболизма в микрокосме нашего тела, отражая изменения макрокосма Земли. Это важная стадия окончания чахоточного моделирования Диспетчеров, чтобы достигнуть баланса принципов сохранения для того, чтобы найти внутреннее равновесие, и, следовательно, достичь энергетического баланса внутри этих систем. Важная часть этих изменений заключается в тайне высших функций митохондриона.

Митохондриальная ДНК Матери

Когда мы сравниваем гендерный принцип, присущий нашему созданию и то, что наш принцип Матери возвращает энергетическое равновесие в земное ядро посредством магнитного поля, следующим шагом становится восстановление митохондриальной ДНК. Митохондриальная ДНК - это ДНК, расположенная в митохондриях, структурах внутри клеток, преобразующих химическую энергию, поступающую с пищей, в форму, которую клетки могут использовать, - аденозин трифосфат (АТФ). АТФ измеряет световой коэффициент, проводимый клетками и тканями тела, и непосредственно связан с воплощением духовного сознания, которое является энергией и важно для энергетического метаболизма.

Митохондриальная ДНК - это только небольшая часть ДНК в клетке; большая часть ДНК содержится в ядре клетки. У большинства видов на Земле, включая людей, митохондриальная ДНК наследуется исключительно от матери. Митохондрии имеют свой собственный генетический материал и механизм создания своих собственных РНК и новых белков. Этот процесс называют биосинтезом белка. Биосинтез белка относится к процессам, посредством которых биологические клетки генерируют новые наборы белков.

Без правильно функционирующей митохондриальной ДНК человечество не может эффективно вырабатывать новые белки для синтеза ДНК, а также сохранять уровень ATФ, необходимый для генерации света в клетке, чтобы воплотить наше духовное сознание. Таким образом, вследствие повреждения митохондриальной ДНК, человечество крайне пристрастилось к потреблению всего во внешнем мире для заполнения энергетической пустоты внутри наших клеток. (См. Чужеродные установки Негативной Инопланетной Программы для зависимостей).

Не зная ничего другого в нашей недавней истории и стерев воспоминания, человечество не сознает, что мы существовали с значительно дисфункциональным митохондрионом.

Это прямой результат извлечения из Земли ДНК Матери, магнитных принципов, протонной структуры и наличие синтетической чужеродной версии «Темной Матери», которая была помещена в планетарную архитектуру, чтобы подражать ее функциям. Человечество существовало на планете без своего истинного Материнского принципа, и очевидно это было записано в клетках нашей митохондриальной ДНК. Этот было описано много раз как вторжение Негативной Инопланетной Программы в Планетарные Логосы посредством управления магнитосферой и магнитным полем.

Криста

Внутренняя митохондриальная мембрана распределяется в многочисленных кристах, которые увеличивают площадь поверхности внутренней митохондриальной мембраны, увеличивая ее способность производить АТФ. Именно эта область митохондриона, когда функционирует правильно, увеличивает энергию АТФ и генерирует свет в клетках и тканях тела. Высшая функция крист в митохондрионе активизируется в группах Вознесения, начинаясь в этом цикле. Название «криста» было дано в результате научного открытия, поскольку она непосредственно связана с активацией кристаллического гена.

Изменение рецепторов эстрогена

Материнская митохондриальная ДНК и магнитные сдвиги имеют множество факторов, которые вносят коррективы и вызывают симптомы в репродуктивных циклах женщин. Гормоны эстрогена активизируют рецепторы эстрогена, которые являются белками, входящими в клетки и связаны с ДНК, внося изменения в генетическое выражение. Клетки могут общаться друг с другом, выпуская молекулы, которые передают сигналы другим восприимчивым клеткам. Эстроген выделяется тканями, такими как яичники и плацента, проходя через клеточные мембраны принимающих клеток, и связывается с рецепторами эстрогена в клетках. Рецепторы эстрогена управляют передачей сообщений между ДНК и РНК. Таким образом, в настоящее время многие женщины замечают необычные, странные менструальные циклы, вызванные доминированием эстрогена. Изменения уровня эстрогена происходят и у мужчин, и у женщин, поэтому прислушайтесь к своему телу, возможно, необходимо помочь поддержать эти изменения. Позаботьтесь о печени и детоксикации, исключите потребление сахара и пищу, стимулирующую и увеличивающую гормоны, следите за бактериальным балансом в кишечнике и теле - это полезно для поддержания баланса эстрогена.

Митохондриальная болезнь истощает энергию

Митохондриальные болезни возникают в результате генетических мутаций, отпечатанных в последовательности ДНК. Искусственная архитектура, помещенная на планету, например, инопланетные механизмы, стремящиеся создать генетические модификации для узурпирования Материнской ДНК, которые проявляются как мутации и повреждение ДНК всех видов. Митохондриальные болезни характерны блокировкой энергии в теле, вследствие того, что болезнь накапливается, наследуя материнскую генетику в наследственных родословных.

Митохондрион важен для ежедневного функционирования клеток и энергетического метаболизма, который также ведет к духовному развитию души и воплощению Сверхдуши (монады). Митохондриальная болезнь уменьшает эффективное генерирование энергии, доступной для тела и сознания, останавливает рост развития человека и духовный рост. Таким образом, тело быстрее стареет и повышается риск заболеваний; личная энергия деактивируется, и, таким образом, исчерпывается. Это значительно ограничивает количество пригодной энергии, доступной для развития мозга и работы всех неврологических системных. Истощение энергетических запасов для мозгового и неврологического развития способствует спектрам аутизма, нейродегенерации и других недостатков работы мозга. Дефекты в митохондриальных генах связаны с сотнями «клинических» заболеваний крови, мозга и неврологических расстройствах.

Функции крови, мозга и неврологические функции планетарного тела приравниваются к архитектуре лей-линий, чакровых центров и систем Звездных Врат, которые управляют энергетическим потоком (кровью), чтобы сформировать тело сознания, известное как Древовидная Сеть 12 Планетарного Храма. Функции крови, мозга и неврологические функции человеческого тела приравниваются к такой же Древовидной Сети 12 Храма Человека. Как только Храм и установки ДНК повреждены или видоизменены, повреждается кровь, мозг и нервная система. Если наша кровь, мозг и нервная система заблокированы или повреждены, мы не можем переводить язык, поддерживать связь с , строить многомерные световые тела для получения высшей мудрости (Софии). Наши виды языка на многих уровнях, включая наш язык ДНК, перепутаны и смешаны теми, кто стремился поработить и ожесточить Землю.

Как мы знаем, большая часть источников кинетической или других внешних энергий активно контролируется властвующей элитой для подавления развития человека и ограничения возможностей равноправного использования или справедливого обмена ресурсами для совместного использования населением Земли. Стратегия ы состоит в том, чтобы управлять всей энергией и источниками энергии (даже контроль над ДНК и душой), таким образом, создается правящий класс и класс невольников или рабов. Используя метода группы Ориона «разделяй и властвуй», намного легче управлять населением, при этом оно травмировано страхом, невежественно и находится в нищете.

Перевод: Oreanda Web

Основная статья: Митохондриальная ДНК

Находящаяся в матриксе митохондриальная ДНК представляет собой замкнутую кольцевую двуспиральную молекулу, в клетках человека имеющую размер 16569 нуклеотидных пар, что приблизительно в 10 5 раз меньше ДНК, локализованной в ядре. В целом митохондриальная ДНК кодирует 2 рРНК, 22 тРНК и 13 субъединиц ферментов дыхательной цепи, что составляет не более половины обнаруживаемых в ней белков. В частности, под контролем митохондриального генома кодируются семь субъединиц АТФ-синтетазы, три субъединицы цитохромоксидазы и одна субъединица убихинол-цитохром-с -редуктазы. При этом все белки, кроме одного, две рибосомные и шесть транспортных РНК транскрибируются с более тяжёлой (наружной) цепи ДНК, а 14 других тРНК и один белок транскрибируются с более лёгкой (внутренней) цепи.

На этом фоне геном митохондрий растений значительно больше и может достигать 370000 нуклеотидных пар, что примерно в 20 раз больше описанного выше генома митохондрий человека. Количество генов здесь также примерно в 7 раз больше, что сопровождается появлением в митохондриях растений дополнительных путей электронного транспорта, не сопряжённых с синтезом АТФ.

Митохондриальная ДНК реплицируется в интерфазе, что частично синхронизировано с репликацией ДНК в ядре. Во время же клеточного цикла митохондрии делятся надвое путём перетяжки, образование которой начинается с кольцевой бороздки на внутренней митохондриальной мембране. Детальное изучение нуклеотидной последовательности митохондриального генома позволило установить то, что в митохондриях животных и грибов нередки отклонения от универсального генетического кода. Так, в митохондриях человека кодон ТАТ вместо изолейцина в стандартном коде кодирует аминокислоту метионин, кодоны ТСТ и ТСС, обычно кодирующие аргинин, являются стоп-кодонами, а кодон АСТ, в стандартном коде являющийся стоп-кодоном, кодирует аминокислоту метионин. Что касается митохондрий растений, то, по-видимому, они используют универсальный генетический код. Другой чертой митохондрий является особенность узнавания кодонов тРНК, заключающаяся в том, что одна подобная молекула способна узнавать не один, но сразу три или четырекодона. Указанная особенность снижает значимость третьего нуклеотида в кодоне и приводит к тому, что митохондрии требуется меньшее разнообразие типов тРНК. При этом достаточным количеством оказываются всего 22 различных тРНК.

Имея собственный генетический аппарат, митохондрия обладает и собственной белоксинтезирующей системой, особенностью которой в клетках животных и грибов являются очень маленькие рибосомы, характеризуемые коэффициентом седиментации 55S, что даже ниже аналогичного показателя у 70S-рибосом прокариотического типа. При этом две большие рибосомные РНК также имеют меньшие размеры, чем у прокариот, а малая рРНК вообще отсутствует. В митохондриях растений, напротив, рибосомы более сходны с прокариотическими по размерам и строению.


Митохондриальные белки[править | править исходный текст]

Количество транслируемых с митохондриальной мРНК белков, формирующих субъединицы крупных ферментных комплексов, ограничено. Значительная часть белков кодируется в ядре и синтезируется на цитоплазматических 80S-рибосомах. В частности, так образуются некоторые белки - переносчики электронов, митохондриальные транслоказы, компоненты транспорта белков в митохондрии, а также факторы, необходимые для транскрипции, трансляции и репликации митохондриальной ДНК. При этом подобные белки на своём N-конце имеют особые сигнальные пептиды, размер которых варьирует от 12 до 80 аминокислотных остатков. Данные участки формируют амфифильные завитки, обеспечивают специфический контакт белков со связывающими доменами митохондриальных распознающих рецепторов, локализованных на наружной мембране. До наружной мембраны митохондрии данные белки транспортируются в частично развёрнутом состоянии в ассоциации с белками-шаперонами (в частности - с hsp70). После переноса через наружную и внутреннюю мембраны в местах их контактов поступающие в митохондрию белки вновь связываются с шаперонами, но уже собственного митохондриального происхождения, которые подхватывают пересекающий мембраны белок, способствуют его втягиванию в митохондрию, а также контролируют процесс правильного сворачивания полипептидной цепи. Большинство шаперонов обладает АТФазной активностью, в результате чего как транспорт белков в митохондрию, так и образование их функционально активных форм являются энергозависимыми процессами.

05.05.2015 13.10.2015

Все сведения о строении организма человека и его предрасположенности к болезням зашифрованы в виде молекул ДНК. Основная информация находится в ядрах клеток. Однако 5% ДНК локализовано в митохондриях.

Что называют митохондриями?

Митохондрии являются клеточными органеллами эукариот, которые нужны для того, чтобы осуществить превращение энергии, заключенной в питательных веществах в соединения, которые могут усваивать клетки. Поэтому они нередко называются «энергетическими станциями», ведь без них существование организма невозможно.
Своя генная информация у данных органелл появилась вследствие того, что ранее они представляли собой бактерии. После их попадания в клетки организма-хозяина, они не смогли сохранить свой геном, при этом часть собственного генома они передали клеточному ядру организма-хозяина. Поэтому сейчас их ДНК (мтДНК) содержит только часть, а именно 37 генов от исходного количества. Главным образом, в них зашифрован механизм трансформации глюкозы до соединений — углекислый газ и вода с получением энергии (АТФ и НАДФ), без которой и невозможно существование организма хозяина.

В чем уникальность мтДНК?

Главное свойство, присущее митохондриальной ДНК, заключается в возможности наследовании ее только по линии матери. При этом все дети (мужчины или женщины) могут получить митохондрии от яйцеклетки. Происходит это благодаря тому, что женские яйцеклетки содержат более высокое количество данных органелл (до 1000 раз), чем мужские сперматозоиды. Вследствие этого дочерний организм получает их только от своей матери. Поэтому и унаследование их от отцовской клетки совершенно невозможно.
Известно, что гены митохондрий передались нам из далекого прошлого — от нашей проматери — «митохондриальной Евы», являющейся общим предком всех людей планеты по материнской линии. Поэтому данные молекулы считаются самым идеальным объектом при генетических экспертизах для установления родства по линии матери.

Как происходит определение родства?

Митохондриальные гены имеют множество точечных мутаций, благодаря чему они очень вариабельны. Это и позволяет установить родство. На генетической экспертизе с использованием специальных генетических анализаторов – секвенаторов, определяются индивидуальные точечные нуклеотидные изменения генотипа, их сходство или различие. У людей, не имеющих родственных связей по линии матери геномы митохондрий различаются существенно.
Определение родства возможно благодаря удивительным характеристикам митохондриального генотипа:
они не подвержены рекомбинациям, поэтому молекулы изменяются лишь в процессе мутирования, который может происходить в течение тысячелетия;
возможность выделения из любых биологических материалов;
при недостатке биоматериала или деградации ядерного генома, мтДНК может стать единственным источником для проведения анализов, благодаря огромному количеству ее копий;
вследствие большого количества мутаций по сравнению с ядерными генами клеток, достигается высокая точность при проведении анализа генного материала.

Что возможно установить при генной экспертизе?

Генная экспертиза мтДНК поможет при диагностике следующих случаев.
1. Для установления родства между людьми по линии матери: между дедом (или бабушкой) с внуком, братом с сестрой, дядей (или тетей) с племянником.
2. При анализе небольшого количества биоматериала. Ведь мтДНК содержится у каждой клетки в значительном количестве (100 — 10 000), тогда как ядерная — только по 2 копии у каждой 23 имеющихся хромосом.
3. При идентификации древнего биоматериала – сроком хранения более, чем тысячелетнего периода. Именно благодаря данному свойству ученые смогли идентифицировать генный материал из останков членов семьи Романовых.
4. При отсутствии иного материала, ведь даже один волос содержит значительное количество мтДНК.
5. При определении принадлежности генов к генеалогическим ветвям человечества (африканской, американской, ближневосточной, европейской гаплогруппе и другим), благодаря чему возможно определение происхождения человека.

Митохондриальные заболевания и их диагностика

Митохондриальные заболевания проявляются в основном за счет дефектов мтДНК клеток, связанных со значительной подверженности данных органелл к мутациям. Сегодня насчитывается уже порядка 400 болезней, связанных с их дефектами.
В норме каждая клетка могут включать как нормальные митохондрии, так и с определенными нарушениями. Часто признаки заболевания при этом никак не проявляют себя. Однако при ослаблении процесса синтеза энергии в них наблюдается проявление таких болезней. Данные заболевания, прежде всего, связаны с нарушением мышечной или нервной систем. Как правило, при таких болезнях наблюдается позднее начало клинических проявлений. Частота возникновения данных болезней составляет 1:200 человек. Известно, что наличие мутаций митохондрий способно вызвать нефротический синдром при беременности женщины и даже внезапную смерть младенца. Поэтому, исследователями предпринимаются активные попытки решения данных проблем, связанных с лечением и передачей генетических заболеваний этого типа от матерей к детям.

Как связано старение с митохондриями?

Реорганизацию генома данных органелл обнаружили и при анализе механизма старения организма. Сотрудниками Университета Хопкинса опубликованы результаты, проведенные при наблюдениях за показателями крови 16000 пожилых людей из Америки, демонстрирующие, что снижение количества мтДНК было напрямую взаимосвязано с возрастом пациентов.

Большинство из рассмотренных вопросов сегодня стало основой новой науки – «митохондриальной медицины», сформировавшейся в виде отдельного направления в 20 столетии. Прогнозирование и лечение заболеваний, связанных с нарушением генома митохондрий, генетическая диагностика – вот первостепенные её задачи.

Гены, оставшиеся в ходе эволюции в «энергетических станциях клетки», помогают избежать проблем в управлении: если в митохондрии что-то сломается, она может починить это сама, не дожидаясь разрешения из «центра».

Наши клетки получат энергию с помощью особых органелл, называемых митохондриями, которых часто так и называют энергетическими станциями клетки. Внешне они выглядят как цистерны с двойной стенкой, причём внутренняя стенка очень неровная, с многочисленными сильными впячиваниями.

Клетка с ядром (окрашено синим) и митохондриями (окрашены красным). (Фото NICHD / Flickr.com.)

Митохондрии в разрезе, выросты внутренней мембраны видны как продольные внутренние полосы. (Фото Visuals Unlimited / Corbis.)

В митохондриях происходит огромное количество биохимических реакций, в ходе которых «пищевые» молекулы постепенно окисляются и распадаются, а энергия их химических связей запасается в удобной для клетки форме. Но, кроме того, у этих «энергетических станций» есть своя ДНК с генами, которую обслуживают собственные молекулярные машины, обеспечивающие синтез РНК с последующим синтезом белка.

Считается, что митохондрии в очень далёком прошлом были самостоятельными бактериями, которых ели какие-то другие одноклеточные существа (с большой вероятностью, археи). Но однажды «хищники» вдруг перестали переваривать проглоченных протомитохондрий, удерживая их внутри себя. Началось долгое притирание симбионтов друг к другу; в итоге те, кого проглотили, сильно упростились в строении и стали внутриклеточными органеллами, а их «хозяева» получили возможность за счёт более эффективной энергетики развиваться дальше, во всё более и более сложные формы жизни, вплоть до растений и животных.

О том, что митохондрии когда-то были самостоятельными, говорят остатки их генетического аппарата. Разумеется, если живёшь внутри на всём готовом, необходимость содержать собственные гены пропадает: ДНК современных митохондрий в человеческих клетках содержит всего 37 генов - против 20-25 тысяч тех, что содержатся в ядерной ДНК. Многие из митохондриальных генов за миллионы лет эволюции перебрались в клеточное ядро: белки, которые они кодируют, синтезируются в цитоплазме, а потом транспортируются в митохондрии. Однако тут же возникает вопрос: а почему 37 генов всё-таки остались там, где были?

Митохондрии, повторим, есть у всех эукариотических организмов, то есть и у животных, и у растений, и у грибов, и у простейших. Иан Джонстон (Iain Johnston ) из Бирмингемского университета и Бен Уильямс (Ben P. Williams ) из Института Уайтхеда проанализировали более 2 000 митохондриальных геномов, взятых у различных эукариот. С помощью особой математической модели исследователи смогли понять, какие из генов в ходе эволюции были более склонны оставаться в митохондриях.